版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济南市山东师范大学附中2023-2024学年数学高一下期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=x⋅lnA. B.C. D.2.若圆心坐标为的圆,被直线截得的弦长为,则这个圆的方程是()A. B.C. D.3.一个球自高为米的地方自由下落,每次着地后回弹高度为原来的,到球停在地面上为止,球经过的路程总和为()米A. B. C. D.4.在中,点满足,则()A. B.C. D.5.在中,角所对的边分别为,已知下列条件,只有一个解的是()A.,, B.,,C.,, D.,,6.在三棱锥中,,,则三棱锥外接球的体积是()A. B. C. D.7.如果数据的平均数为,方差为,则的平均数和方差分别为()A. B. C. D.8.已知均为实数,则“”是“构成等比数列”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件9.已知一组数1,1,2,3,5,8,,21,34,55,按这组数的规律,则应为()A.11 B.12 C.13 D.1410.集合,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设是公比为的等比数列,,令,若数列有连续四项在集合中,则=.12.已知直线与,当时,实数_______;当时,实数_______.13.若函数的图像与直线有且仅有四个不同的交点,则的取值范围是______14.函数y=sin2x+2sin2x的最小正周期T为_______.15.已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________.16.已知三棱锥,平面,,,,则三棱锥的侧面积__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某地统计局调查了10000名居民的月收入,并根据所得数据绘制了样本的频率分布直方图如图所示.(1)求居民月收入在[3000,3500)内的频率;(2)根据频率分布直方图求出样本数据的中位数;(3)为了分析居民的月收入与年龄、职业等方面的关系,必须按月收入再从这10000中用分层抽样的方法抽出100人做进一步分析,则应从月收入在[2500,3000)内的居民中抽取多少人?18.已知,.(Ⅰ)求,的值;(Ⅱ)求的值.19.设为数列的前项和,.(1)求证:数列是等比数列;(2)求证:.20.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如表所示:零件的个数个2345加工的时间2.5344.51求出y关于x的线性回归方程;2试预测加工10个零件需要多少时间?21.在中,内角、、的对边分别为、、,且.(1)求角的大小;(2)若,求的最大值及相应的角的余弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
判断函数的奇偶性排除选项,利用特殊点的位置排除选项即可.【详解】函数f(x)=x⋅ln|x|是奇函数,排除选项A,当x=1e时,y=-1e,对应点在故选:D.【点睛】本题考查函数的图象的判断,函数的奇偶性以及特殊点的位置是判断函数的图象的常用方法.2、B【解析】
设出圆的方程,求出圆心到直线的距离,利用圆心到直线的距离、半径和半弦长满足勾股定理,求得圆的半径,即可求得圆的方程,得到答案.【详解】由题意,设圆的方程为,则圆心到直线的距离为,又由被直线截得的弦长为,则,所以所求圆的方程为,故选B.【点睛】本题主要考查了圆的方程的求解,以及直线与圆的弦长的应用,其中解答中熟记直线与圆的位置关系,合理利用圆心到直线的距离、半径和半弦长满足勾股定理是解答的关键,着重考查了推理与运算能力,属于基础题.3、D【解析】
设球第次到第次着地这一过程中球经过的路程为米,可知数列是以为首项,以为公比的等比数列,由此可得出球经过的路程总和为米.【详解】设球第次到第次着地这一过程中球经过的路程为米,则,由题意可知,数列是以为首项,以为公比的等比数列,因此,球经过的路程总和米.故选:D.【点睛】本题考查等比数列的实际应用,涉及到无穷等比数列求和问题,考查计算能力,属于中等题.4、D【解析】
因为,所以,即;故选D.5、D【解析】
首先根据正弦定理得到,比较与的大小关系即可判定A,B错误,再根据大边对大角即可判定C错误,根据勾股定理即可判定D正确.【详解】对于A,因为,,所以,有两个解,故A错误.对于B,因为,,所以,无解,故B错误.对于C,因为,所以,即,,所以无解,故C错误.对于D,,为直角三角形,故D正确.故选:D【点睛】本题主要考查三角形个数的判断,利用正弦定理判断为解题的关键,属于简单题.6、B【解析】
三棱锥是正三棱锥,取为外接圆的圆心,连结,则平面,设为三棱锥外接球的球心,外接球的半径为,可求出,然后由可求出半径,进而求出外接球的体积.【详解】由题意,易知三棱锥是正三棱锥,取为外接圆的圆心,连结,则平面,设为三棱锥外接球的球心.因为,所以.因为,所以.设三棱锥外接球的半径为,则,解得,故三棱锥外接球的体积是.故选B.【点睛】本题考查了三棱锥的外接球体积的求法,考查了学生的空间想象能力与计算求解能力,属于中档题.7、D【解析】
根据平均数和方差的公式,可推导出,,,的平均数和方差.【详解】因为,所以,所以的平均数为;因为,所以,故选:D.【点睛】本题考查平均数与方差的公式计算,考查对概念的理解与应用,考查基本运算求解能力.8、A【解析】解析:若构成等比数列,则,即是必要条件;但时,不一定有成等比数列,如,即是不充分条件.应选答案A.9、C【解析】
易得从第三项开始数列的每项都为前两项之和,再求解即可.【详解】易得从第三项开始数列的每项都为前两项之和,故.故选:C【点睛】该数列为“斐波那契数列”,从第三项开始数列的每项都为前两项之和,属于基础题.10、C【解析】
先求解不等式化简集合A和B,再根据集合的交集运算求得结果即可.【详解】因为集合,集合或,所以.故本题正确答案为C.【点睛】本题考查一元二次不等式,分式不等式的解法和集合的交集运算,注意认真计算,仔细检查,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
考查等价转化能力和分析问题的能力,等比数列的通项,有连续四项在集合,四项成等比数列,公比为,=-9.12、【解析】
根据两直线垂直和平行的充要条件,得到关于的方程,解方程即可得答案.【详解】当时,,解得:;当时,且,解得:.故答案为:;.【点睛】本题考查两直线垂直和平行的充要条件,考查逻辑推理能力和运算求解能力,属于基础题.13、【解析】
将函数写成分段函数的形式,再画出函数的图象,则直线与函数图象有四个交点,从而得到的取值范围.【详解】因为因为所以,所以图象关于对称,其图象如图所示:因为直线与函数图象有四个交点,所以.故答案为:.【点睛】本题考查利用三角函数图象研究与直线交点个数,考查数形结合思想的应用,作图时发现图象关于对称,是快速画出图象的关键.14、【解析】考点:此题主要考查三角函数的概念、化简、性质,考查运算能力.15、8π【解析】分析:作出示意图,根据条件分别求出圆锥的母线,高,底面圆半径的长,代入公式计算即可.详解:如下图所示,又,解得,所以,所以该圆锥的体积为.点睛:此题为填空题的压轴题,实际上并不难,关键在于根据题意作出相应图形,利用平面几何知识求解相应线段长,代入圆锥体积公式即可.16、【解析】
根据题意将三棱锥放入对应长方体中,计算各个面的面积相加得到答案.【详解】三棱锥,平面,,,画出图像:易知:每个面都是直角三角形.【点睛】本题考查了三棱锥的侧面积,将三棱锥放入对应的长方体是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0.15(2)2400(3)25人【解析】
(1)由频率分布直方图计算可得月收入在[3000,3500)内的频率;(2)分别计算小长方形的面积值,利用中位数的特点即可确定中位数的值;(3)首先确定10000人中月收入在[2500,3000]内的人数,然后结合分层抽样的特点可得应抽取的人数.【详解】(1)居民月收入在[3000,3500]内的频率为(2)因为,,,,所以样本数据的中位数为.(3)居民月收入在[2500,3000]内的频率为,所以这10000人中月收入在[2500,3000]内的人数为.从这10000人中用分层抽样的方法抽出100人,则应从月收入在[2500,3000]内的居民中抽取(人).【点睛】利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.18、(Ⅰ),.(Ⅱ).【解析】试题分析:(Ⅰ)结合角的范围和同角三角函数基本关系可得,.(Ⅱ)将原式整理变形,结合(Ⅰ)的结论可得其值为.试题解析:(Ⅰ)因为,所以,由于,所以,所以.(Ⅱ)原式..19、(1)见解析;(2)见解析.【解析】
(1)令,由求出的值,再令,由得,将两式相减并整理得,计算出为非零常数可证明出数列为等比数列;(2)由(1)得出,可得出,利用放缩法得出,利用等比数列求和公式分别求出数列和的前项和,从而可证明出所证不等式成立.【详解】(1)当时,,解得;当时,由得,上述两式相减得,整理得.则,且.所以,数列是首项为,公比为的等比数列;(2)由(1)可知,则.因为,所以.又因为,所以.综上,.【点睛】本题考查利用前项和求数列通项,考查等比数列的定义以及放缩法证明数列不等式,解题时要根据数列递推公式或通项公式的结构选择合适的方法进行求解,考查分析问题和解决问题的能力,属于中等题.20、(1);(2)小时【解析】
(1)由已知数据求得与的值,则线性回归方程可求;(2)在(1)中求得的回归方程中,取求得值即可.【详解】(1)由表中数据得:,,,,,,.(2)将代入回归直线方程,(小时).预测加工10个零件需要小时.【点睛】本题考查了回归分析,解答此类问题的关键是利用公式计算,计算要细心.21、(1)(2)的最大值为,此时【解析】
(1)由正弦定理边角互化思想结合内角和定理、诱导公式可得出的值,结合角的取值范围可得出角的大小;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国调味袋装海苔数据监测研究报告
- 2024至2030年西班牙多点锁项目投资价值分析报告
- 2024至2030年实木脚垫项目投资价值分析报告
- 年度机械表面曝气机市场分析及竞争策略分析报告
- 年度同位素检测装置市场分析及竞争策略分析报告
- 2025届河北省南宫中学等四校高三物理第一学期期末考试模拟试题含解析
- 云南省昆明市海口中学2025届高二物理第一学期期中质量检测试题含解析
- 内蒙古巴彦淖尔第一中学2025届高三物理第一学期期末监测模拟试题含解析
- 2025届天津市新四区示范校高一物理第一学期期中综合测试试题含解析
- 山东省临沂市莒南县第三中学2025届物理高二上期中学业质量监测模拟试题含解析
- 2024美团外卖服务合同范本
- 2024-2030年飞机内部紧固件行业市场现状供需分析及投资评估规划分析研究报告
- 2023~2024学年第一学期高一期中考试数学试题含答案
- 企业信用修复服务协议
- 部编人教版三年级语文上册期中测试卷5份(含答案)
- 期中测评试卷(1-4单元)(试题)-2024-2025学年人教版三年级数学上册
- 2023年国家公务员录用考试《行测》行政执法卷-解析
- 非遗漆扇扇子科普宣传
- 城市轨道交通脱轨事故应急预案
- GB/T 15822.1-2024无损检测磁粉检测第1部分:总则
- 2024新版七年级英语单词表
评论
0/150
提交评论