广东省茂名市2023-2024学年高一数学第二学期期末学业水平测试试题含解析_第1页
广东省茂名市2023-2024学年高一数学第二学期期末学业水平测试试题含解析_第2页
广东省茂名市2023-2024学年高一数学第二学期期末学业水平测试试题含解析_第3页
广东省茂名市2023-2024学年高一数学第二学期期末学业水平测试试题含解析_第4页
广东省茂名市2023-2024学年高一数学第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省茂名市2023-2024学年高一数学第二学期期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数则的是A. B. C. D.2.函数图像的一条对称轴方程为()A. B. C. D.3.在平面直角坐标系中,圆:,圆:,点,动点,分别在圆和圆上,且,为线段的中点,则的最小值为A.1 B.2 C.3 D.44.已知是的边上的中点,若向量,,则向量等于()A. B. C. D.5.函数的一个对称中心是()A. B. C. D.6.已知,,点在内,且,设,则等于()A. B.3 C. D.7.在数列中,已知,,则该数列前2019项的和()A.2019 B.2020 C.4038 D.40408.某同学用收集到的6组数据对(xi,yi)(i=1,2,3,4,5,6)制作成如图所示的散点图(点旁的数据为该点坐标),并由最小二乘法计算得到回归直线l的方程:x,相关指数为r.现给出以下3个结论:①r>0;②直线l恰好过点D;③1;其中正确的结论是A.①② B.①③C.②③ D.①②③9.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯:A.281盏 B.9盏 C.6盏 D.3盏10.直线的倾斜角的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设向量,且,则__________.12.设向量,若,,则.13.若的面积,则=14.已知直线与,当时,实数_______;当时,实数_______.15.已知数列满足:(),设的前项和为,则______;16.在平面直角坐标系中,定义两点之间的直角距离为:现有以下命题:①若是轴上的两点,则;②已知,则为定值;③原点与直线上任意一点之间的直角距离的最小值为;④若表示两点间的距离,那么.其中真命题是__________(写出所有真命题的序号).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,已知,是边上的一点,,,.(1)求的大小;(2)求的长.18.已知都是第二象限的角,求的值。19.如图所示,在直三棱柱(侧面和底面互相垂直的三棱柱叫做直三棱柱)中,平面,,设的中点为D,.(1)求证:平面;(2)求证:.20.如图,在四边形ABCD中,,,已知,.(1)求的值;(2)若,且,求BC的长.21.在平面直角坐标系中,已知点,,.(Ⅰ)求的坐标及;(Ⅱ)当实数为何值时,.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据自变量的范围确定表达式,从里往外一步步计算即可求出.【详解】因为,所以,因为,所以==3.【点睛】主要考查了分段函数求值问题,以及对数的运算,属于基础题.对于分段函数求值问题,一定要注意根据自变量的范围,选择正确的表达式代入求值.2、B【解析】

对称轴为【详解】依题意有解得故选B【点睛】本题考查的对称轴,属于基础题。3、A【解析】

由得,根据向量的运算和两点间的距离公式,求得点的轨迹方程,再利用点与圆的位置关系,即可求解的最小值,得到答案.【详解】设,,,由得,即,由题意可知,MN为Rt△AMB斜边上的中线,所以,则又由,则,可得,化简得,∴点的轨迹是以为圆心、半径等于的圆C3,∵M在圆C3内,∴MN的最小值即是半径减去M到圆心的距离,即,故选A.【点睛】本题主要考查了圆的方程及性质的应用,以及点圆的最值问题,其中解答中根据圆的性质,求得点的轨迹方程,再利用点与圆的位置关系求解是解答的关键,着重考查了推理与运算能力,属于中档试题.4、C【解析】

根据向量加法的平行四边形法则,以及平行四边形的性质可得,,解出向量.【详解】根据平行四边形法则以及平行四边形的性质,有.故选.【点睛】本题考查向量加法的平行四边形法则以及平行四边形的性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.5、A【解析】

令,得:,即函数的对称中心为,再求解即可.【详解】解:令,解得:,即函数的对称中心为,令,即函数的一个对称中心是,故选:A.【点睛】本题考查了正切函数的对称中心,属基础题.6、B【解析】

先根据,可得,又因为,,所以可得:在轴方向上的分量为,在轴方向上的分量为,又根据,可得答案.【详解】,,

,,

在轴方向上的分量为,

在轴方向上的分量为,

,,

两式相比可得:.故选B.【点睛】.向量的坐标运算主要是利用加、减、数乘运算法则进行的.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及运算法则的正确使用.7、A【解析】

根据条件判断出为等差数列,利用等差数列的性质得到和之间的关系,得到答案.【详解】为等差数列【点睛】本题考查等差中项,等差数列的基本性质,属于简单题.8、A【解析】由图可知这些点分布在一条斜率大于零的直线附近,所以为正相关,即相关系数因为所以回归直线的方程必过点,即直线恰好过点;因为直线斜率接近于AD斜率,而,所以③错误,综上正确结论是①②,选A.9、D【解析】

设塔的顶层共有盏灯,得到数列的公比为2的等比数列,利用等比数列的前n项公式,即可求解.【详解】设塔的顶层共有盏灯,则数列的公比为2的等比数列,所以,解得,即塔的顶层共有3盏灯,故选D.【点睛】本题主要考查了等比数列的通项公式与求和公式的应用,着重考查了推理与计算能力,属于基础题.10、B【解析】

由直线的方程可确定直线的斜率,可得其范围,进而可求倾斜角的取值范围.【详解】解:直线的斜率为,,根据正切函数的性质可得倾斜角的取值范围是故选:.【点睛】本题考查直线的斜率与倾斜角的关系,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】因为,所以,故答案为.12、【解析】

利用向量垂直数量积为零列等式可得,从而可得结果.【详解】因为,且,所以,可得,又因为,所以,故答案为.【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.13、【解析】试题分析:,.考点:三角形的面积公式及余弦定理的变形.点评:由三角形的面积公式,再根据,直接可求出tanC的值,从而得到C.14、【解析】

根据两直线垂直和平行的充要条件,得到关于的方程,解方程即可得答案.【详解】当时,,解得:;当时,且,解得:.故答案为:;.【点睛】本题考查两直线垂直和平行的充要条件,考查逻辑推理能力和运算求解能力,属于基础题.15、130【解析】

先利用递推公式计算出的通项公式,然后利用错位相减法可求得的表达式,即可完成的求解.【详解】因为,所以,所以,所以,又因为,不符合时的通项公式,所以,当时,,所以,所以,所以,所以.故答案为:.【点睛】本题考查根据数列的递推公式求通项公式以及错位相减法的使用,难度一般.利用递推公式求解数列的通项公式时,若出现了的形式,一定要注意标注,同时要验证是否满足的情况,这决定了通项公式是否需要分段去写.16、①②④【解析】

根据新定义的直角距离,结合具体选项,进行逐一分析即可.【详解】对①:因为是轴上的两点,故,则,①正确;对②:根据定义因为,故,②正确;对③:根据定义,当且仅当时,取得最小值,故③错误;对④:因为,由不等式,即可得,故④正确.综上正确的有①②④故答案为:①②④.【点睛】本题考查新定义问题,涉及同角三角函数关系,绝对值三角不等式,属综合题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:(1)在中,由余弦定理得,最后根据的值及,即可得到的值;(2)在中,由正弦定理得到,从而代入数据进行运算即可得到的长.试题解析:(1)在中,,由余弦定理可得又因为,所以(2)在中,由正弦定理可得所以.考点:1.正弦定理;2.余弦定理;3.解斜三角形.18、;【解析】

根据所处象限可确定的符号,利用同角三角函数关系可求得的值;代入两角和差正弦和余弦公式可求得结果.【详解】都是第二象限的角,,【点睛】本题考查利用两角和差正弦和余弦公式求值的问题;关键是能够根据角所处的范围和同角三角函数关系求得三角函数值.19、(1)见解析;(2)见解析.【解析】

(1)由可证平面;(2)先证,再证,即可证明平面,即可得出.【详解】(1)∵三棱柱为直三棱柱,∴四边形为矩形,∴E为中点,又D点为中点,∴DE为的中位线,∴,又平面,平面,∴平面;(2)∵三棱柱为直三棱柱,∴平面ABC,∴,又∵,∴四边形为正方形,所以,∵平面,∴,和相交于C,∴平面,∴.【点睛】本题考查线面平行的证明,考查线面垂直的判定及性质,考查空间想象能力,属于常考题.20、(1)(2)【解析】

(1)由正弦定理可得;(2)由(1)求得,然后利用余弦定理求解.【详解】(1)在中,由正弦定理,得,因为,,,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论