版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广安市重点中学2024届高一下数学期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.经过平面α外两点,作与α平行的平面,则这样的平面可以作()A.1个或2个B.0个或1个C.1个D.0个2.把函数的图象沿轴向右平移个单位,再把所得图象上各点的纵坐标不变,横坐标变为原来的,可得函数的图象,则的解析式为()A. B.C. D.3.已知数列an的前4项为:l,-12,13,A.an=C.an=4.等比数列的前项和为,若,则公比()A. B. C. D.5.过两点A,B(,的直线倾斜角是,则的值是()A.B.3C.1D.6.已知,,,则,,的大小关系为()A. B. C. D.7.执行如图所示的程序框图,若输入,则输出的数等于()A. B. C. D.8.已知集合A={x∈N|0≤x≤3},B={x∈R|-2<x<2}则A∩B()A.{0,1} B.{1} C.[0,1] D.[0,2)9.已知等比数列中,,且有,则()A. B. C. D.10.一个圆柱的轴截面是正方形,其侧面积与一个球的表面积相等,那么这个圆柱的体积与这个球的体积之比为()A.1:3 B.3:1 C.2:3 D.3:2二、填空题:本大题共6小题,每小题5分,共30分。11.在正方体的体对角线与棱所在直线的位置关系是______.12.已知某中学高三学生共有800人参加了数学与英语水平测试,现学校决定利用随机数表法从中抽取100人的成绩进行统计,先将800人按001,002,…,800进行编号.如果从第8行第7列的数开始从左向右读,(下面是随机数表的第7行至第9行)844217533157245506887704744767217633502683925316591692753562982150717512867363015807443913263321134278641607825207443815则最先抽取的2个人的编号依次为_____.13.已知数列的前项和,那么数列的通项公式为__________.14.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为.15.若,则______.16.在中,,点在边上,若,的面积为,则___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,直三棱柱中,点是棱的中点,点在棱上,已知,,(1)若点在棱上,且,求证:平面平面;(2)棱上是否存在一点,使得平面证明你的结论。18.如果定义在上的函数,对任意的,都有,则称该函数是“函数”.(I)分别判断下列函数:①;②;③,是否为“函数”?(直接写出结论)(II)若函数是“函数”,求实数的取值范围.(III)已知是“函数”,且在上单调递增,求所有可能的集合与19.甲,乙两机床同时加工直径为100cm的零件,为检验质量,各从中抽取6件测量的数据为:甲:99,100,98,100,100,103乙:99,100,102,99,100,100(1)分别计算两组数据的平均数及方差(2)根据计算结果判断哪台机床加工零件的质量更稳定.20.如图,在长方体中,,点为的中点.(1)求证:直线平面;(2)求证:平面平面;(3)求直线与平面的夹角.21.已知函数的最小正周期为,且其图象的一个对称轴为,将函数图象上所有点的橫坐标缩小到原来的倍,再将图象向左平移个单位长度,得到函数的图象.(1)求的解析式,并写出其单调递增区间;(2)求函数在区间上的零点;(3)对于任意的实数,记函数在区间上的最大值为,最小值为,求函数在区间上的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】若平面α外的两点所确定的直线与平面α平行,则过该直线与平面α平行的平面有且只有一个;若平面α外的两点所确定的直线与平面α相交,则过该直线的平面与平面α平行的平面不存在;故选B.2、C【解析】
根据三角函数图像变换的原则,即可得出结果.【详解】先把函数的图象沿轴向右平移个单位,得到;再把图像上各点的纵坐标不变,横坐标变为原来的,得到.故选C【点睛】本题主要考查三角函数的图像变换问题,熟记图像变换的原则即可,属于常考题型.3、D【解析】
分母与项数一样,分子都是1,正负号相间出现,依此可得通项公式【详解】正负相间用(-1)n-1表示,∴a故选D.【点睛】本题考查数列的通项公式,属于基础题,关键是寻找规律,寻找与项数有关的规律.4、A【解析】
将转化为关于的方程,解方程可得的值.【详解】∵,∴,又,∴.故选A.【点睛】本题考查等比数列的基本运算,等比数列中共有五个量,其中是基本量,这五个量可“知三求二”,求解的实质是解方程或解方程组.5、C【解析】试题分析:根据直线斜率的计算式有,解得.考点:直线斜率的计算式.6、D【解析】
利用指数函数、对数函数的单调性直接求解.【详解】解:因为,,所以,,的大小关系为.故选:D.【点睛】本题考查三个数的大小比较,考查指数函数、对数函数的单调性等基础知识,属于基础题.7、B【解析】
模拟执行循环体的过程,即可得到结果.【详解】根据程序框图,模拟执行如下:,满足,,满足,,满足,,不满足,输出.故选:B.【点睛】本题考查程序框图中循环体的执行,属基础题.8、A【解析】
可解出集合A,然后进行交集的运算即可.【详解】A={0,1,2,3},B={x∈R|﹣2<x<2};∴A∩B={0,1}.故选:A.【点睛】本题考查交集的运算,是基础题,注意A中x∈N9、A【解析】,,所以选A10、D【解析】
设圆柱的底面半径为,利用圆柱侧面积公式与球的表面积公式建立关系式,算出球的半径,再利用圆柱与球的体积公式加以计算,可得所求体积之比.【详解】设圆柱的底面半径为,轴截面正方形边长,则,可得圆柱的侧面积,再设与圆柱表面积相等的球半径为,则球的表面积,解得,因此圆柱的体积为,球的体积为,因此圆柱的体积与球的体积之比为.故选:D.【点睛】本题主要考查了圆柱的侧面积和体积公式,以及球的表面积和体积公式的应用,其中解答中熟记公式,合理计算半径之间的关系是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、异面直线【解析】
根据异面直线的定义,作出图形,即可求解,得到答案.【详解】如图所示,与不在同一平面内,也不相交,所以体对角线与棱是异面直线.【点睛】本题主要考查了异面直线的概念及其判定,其中熟记异面直线的定义是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.12、165;535【解析】
按照题设要求读取随机数表得到结果,注意不符合要求的数据要舍去.【详解】读取的第一个数:满足;读取的第二个数:不满足;读取的第三个数:不满足;读取的第三个数:满足.【点睛】随机数表的读取规则:从指定位置开始,按照指定位数读取,一次读取一组,若读取的数不符合规定(不在范围之内),则舍去,重新读取.13、【解析】
运用数列的递推式即可得到数列通项公式.【详解】数列的前项和,当时,得;当时,;综上可得故答案为:【点睛】本题考查数列的通项与前项和的关系,考查分类讨论思想的运用,求解时要注意把通项公式写成分段的形式.14、【解析】
直接利用长度型几何概型求解即可.【详解】因为区间总长度为,符合条件的区间长度为,所以,由几何概型概率公式可得,在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为,故答案为:.【点睛】解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度.15、【解析】
由诱导公式求解即可.【详解】因为所以故答案为:【点睛】本题主要考查了利用诱导公式化简求值,属于基础题.16、【解析】
由,的面积为可以求解出三角形,再通过,我们可以得出(两三角形等高)再利用正弦形式表示各自面积,即能得出的值.【详解】,的面积为,所以为等边三角形,又所以(等高),又所以填写2【点睛】已知三角形面积及一边一角,我们能把形成该角的另外一边算出,从而把三角形所有量都能计算出来(如果需要),求两角正弦值的比值,我们更多联想到正弦定理的公式,或面积公式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】
(1)通过证明,进而证明平面再证明平面平面;(2)取棱的中点,连接交于,结合三角形重心的性质证明,从而证明平面.【详解】(1)在直三棱柱中,由于平面,平面,所以平面平面.(或者得出)由于,是中点,所以.平面平面,平面,所以平面.而平面,于是.因为,,所以,所以.与相交,所以平面,平面所以平面平面(2)为棱的中点时,使得平面,证明:连接交于,连接.因为,为中线,所以为的重心,.从而.面,平面,所以平面【点睛】本题考查面面垂直的证明和线面平行的证明.面面垂直的证明要转化为证明线面垂直,线面平行的证明要转化为证明线线平行.18、(I)①、②是“函数”,③不是“函数”;(II)的取值范围为;(III),【解析】试题分析:(1)根据“β函数”的定义判定.①、②是“β函数”,③不是“β函数”;(2)由题意,对任意的x∈R,f(﹣x)+f(x)≠0,故f(﹣x)+f(x)=2cosx+2a由题意,对任意的x∈R,2cosx+2a≠0,即a≠﹣cosx即可得实数a的取值范围(3)对任意的x≠0,分(a)若x∈A且﹣x∈A,(b)若x∈B且﹣x∈B,验证。(I)①、②是“函数”,③不是“函数”.(II)由题意,对任意的,,即.因为,所以.故.由题意,对任意的,,即.故实数的取值范围为.(Ⅲ)()对任意的(a)若且,则,,这与在上单调递增矛盾,(舍),(b)若且,则,这与是“函数”矛盾,(舍).此时,由的定义域为,故对任意的,与恰有一个属于,另一个属于.()假设存在,使得,则由,故.(a)若,则,矛盾,(b)若,则,矛盾.综上,对任意的,,故,即,则.()假设,则,矛盾.故故,.经检验,.符合题意点睛:此题是新定义的题目,根据已知的新概念,新信息来马上应用到题型中,根据函数的定义即函数没有关于原点对称的部分即可,故可以从图像的角度来研究函数;第三问可以假设存在,最后推翻结论即可。19、(1);,,;(2)乙机床加工零件的质量更稳定.【解析】
(1)根据题中数据,结合平均数与方差的公式,即可得出结果;(2)根据(1)的结果,结合平均数与方差的意义,即可得出结果.【详解】(1)由题中数据可得:;,所以,;(2)两台机床所加工零件的直径的平均值相同,又所以乙机床加工零件的质量更稳定.【点睛】本题主要考查平均数与方差,熟记公式即可,属于常考题型.20、(1)见证明;(2)见证明;(3)【解析】
(1)连接,交于,则为中点,连接OP,可证明,从而可证明直线平面;(2)先证明AC⊥BD,,可得到平面,然后结合平面,可知平面平面;(3)连接,由(2)知,平面平面,可知即为与平面的夹角,求解即可.【详解】(1)证明:连接,交于,则为中点,连接OP,∵P为的中点,∴,∵OP⊂平面,⊄平面,∴平面;(2)证明:长方体中,,底面是正方形,则AC⊥BD,又⊥面,则.∵⊂平面,⊂平面,,∴平面.∵平面,∴平面平面;(3)解:连接,由(2)知,平面平面,∴即为与平面的夹角,在长方体中,∵,∴.在中,.∴直线与平面的夹角为.【点睛】本题考查了线面平行、面面垂直的证明,考查了线面角的求法,考查了学生的空间想象能力和计算求解能力,属于中档题.21、(1),单调递增区间为;(2)、、;(3).【解析】
(1)由函数的最小正周期求出的值,由图象的对称轴方程得出的值,从而可求出函数的解析式;(2)先利用图象变换的规律得出函数的解析式,然后在区间上解方程可得出函数的零点;(3)对分三种情况、、分类讨论,分析函数在区间上的单调性,得出和,可得出关于的表达式,再利用函数的单调性得出函数的最大值.【详解】(1)由题意可知,,.令,即,即函数的图象的对称轴方程为.由于函数图象的一条对称轴方程为,,,,,则,因此,.函数的单调递增区间为;(2)将函数的图象上所有点的橫坐标缩小到原来的倍,得到函数.再将所得函数的图象向左
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版三角高炮合同
- 专项公共区域装饰装修工程承包协议2024一
- 2025年国际合同第六号生皮国际贸易税务筹划合同3篇
- 二零二五年度餐饮企业员工培训与职业发展规划合同3篇
- 2024起重机安装与运输安全保障服务合同3篇
- 2025年度柴油发电机组租赁与维修保养合同4篇
- 2024石材荒料电子商务平台合作协议6篇
- 个性化商标创作协议:2024版委托书版A版
- 2024版生鲜供应合同范本
- 2024金融居间服务的终止与解除合同
- 上海纽约大学自主招生面试试题综合素质答案技巧
- 办公家具项目实施方案、供货方案
- 2022年物流服务师职业技能竞赛理论题库(含答案)
- 危化品安全操作规程
- 连锁遗传和遗传作图
- DB63∕T 1885-2020 青海省城镇老旧小区综合改造技术规程
- 高边坡施工危险源辨识及分析
- 中海地产设计管理程序
- 简谱视唱15942
- 《城镇燃气设施运行、维护和抢修安全技术规程》(CJJ51-2006)
- 项目付款审核流程(visio流程图)
评论
0/150
提交评论