版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省玉龙县第一中学2024年高一数学第二学期期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设向量满足,且,则向量在向量方向上的投影为A.1 B. C. D.2.某实验单次成功的概率为0.8,记事件A为“在实验条件相同的情况下,重复3次实验,各次实验互不影响,则3次实验中至少成功2次”,现采用随机模拟的方法估计事件4的概率:先由计算机给出0~9十个整数值的随机数,指定0,1表示单次实验失败,2,3,4,5,6,7,8,9表示单次实验成功,以3个随机数为组,代表3次实验的结果经随机模拟产生了20组随机数,如下表:752029714985034437863694141469037623804601366959742761428261根据以上方法及数据,估计事件A的概率为()A.0.384 B.0.65 C.0.9 D.0.9043.在各项均为正数的数列中,对任意都有.若,则等于()A.256 B.510 C.512 D.10244.已知,则的值等于()A. B. C. D.5.阅读下面的程序框图,运行相应的程序,若输入的值为24,则输出的值为()A.0 B.1 C.2 D.36.已知,是两个不同的平面,是两条不同的直线,下列命题中错误的是()A.若∥,,,则B.若∥,,,则C.若,,,则⊥D.若⊥,,,,则7.已知向量满足,.O为坐标原点,.曲线,区域.若是两段分离的曲线,则()A. B. C. D.8.已知函数的部分图象如图所示,则此函数的解析式为()A. B.C. D.9.若函数的图象上所有的点向右平移个单位长度后得到的函数图象关于对称,则的值为A. B. C. D.10.已知点,则向量()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.数列通项公式,前项和为,则________.12.等比数列前n项和为,若,则______.13.已知是等差数列,公差不为零,若,,成等比数列,且,则________14.设,则的值是____.15.若、、这三个的数字可适当排序后成为等差数列,也可适当排序后成等比数列,则________________.16.已知扇形的圆心角,扇形的面积为,则该扇形的弧长的值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的顶点在坐标原点,始边与轴的正半轴重合,终边经过点,,且,求(用含、、的形式表示).18.已知是复数,与均为实数,且复数在复平面上对应的点在第一象限,求实数的取值范围.19.已知圆的半径是2,圆心为.(1)求圆的方程;(2)若点是圆上的动点,点在轴上,的最大值等于7,求点的坐标.20.某校为创建“绿色校园”,在校园内种植树木,有A、B、C三种树木可供选择,已知这三种树木6年内的生长规律如下:A树木:种植前树木高0.84米,第一年能长高0.1米,以后每年比上一年多长高0.2米;B树木:种植前树木高0.84米,第一年能长高0.04米,以后每年生长的高度是上一年生长高度的2倍;C树木:树木的高度(单位:米)与生长年限(单位:年,)满足如下函数:(表示种植前树木的高度,取).(1)若要求6年内树木的高度超过5米,你会选择哪种树木?为什么?(2)若选C树木,从种植起的6年内,第几年内生长最快?21.定理:若函数的图象关于直线对称,且方程有个根,则这个根之和为.利用上述定理,求解下列问题:(1)已知函数,,设函数的图象关于直线对称,求的值及方程的所有根之和;(2)若关于的方程在实数集上有唯一的解,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
先由题中条件,求出向量的数量积,再由向量数量积的几何意义,即可求出投影.【详解】因为,,所以,所以,故向量在向量方向上的投影为.故选D【点睛】本题主要考查平面向量的数量积,熟记平面向量数量积的几何意义即可,属于常考题型.2、C【解析】
由随机模拟实验结合图表计算即可得解.【详解】由随机模拟实验可得:“在实验条件相同的情况下,重复3次实验,各次实验互不影响,则3次实验中最多成功1次”共141,601两组随机数,则“在实验条件相同的情况下,重复3次实验,各次实验互不影响,则3次实验中至少成功2次”共组随机数,即事件的概率为,故选.【点睛】本题考查了随机模拟实验及识图能力,属于中档题.3、C【解析】
因为,所以,则因为数列的各项均为正数,所以所以,故选C4、B【解析】.5、C【解析】
根据给定的程序框图,逐次循环计算,即可求解,得到答案.【详解】由题意,第一循环:,能被3整除,不成立,第二循环:,不能被3整除,不成立,第三循环:,不能被3整除,成立,终止循环,输出,故选C.【点睛】本题主要考查了程序框图的识别与应用,其中解答中根据条件进行模拟循环计算是解答的关键,着重考查了运算与求解能力,属于基础题.6、A【解析】
根据平面和直线关系,依次判断每个选项得到答案.【详解】A.若,,,则如图所示情况,两直线为异面直线,错误其它选项正确.故答案选A【点睛】本题考查了直线平面的关系,找出反例是解题的关键.7、A【解析】
由圆的定义及平面向量数量积的性质及其运算可得:点P在以O为圆心,r为半径的圆上运动且点P在以Q为圆心,半径为1和2的圆环区域运动,由图可得解.【详解】建立如图所示的平面直角坐标系,则,,由,则,即点P在以O为圆心,r为半径的圆上运动,又,则点P在以Q为圆心,半径为1和2的圆环区域运动,由图可知:当C∩Ω是两段分离的曲线时,r的取值范围为:3<r<5,故选:A.【点睛】本题考查平面向量数量积的性质及其运算,利用数形结合思想,将向量问题转化为圆与圆的位置关系问题,考查转化与化归思想,属于中等题.8、B【解析】
由图象可知,所以,又因为,所以所求函数的解析式为.9、C【解析】
先由题意求出平移后的函数解析式,再由对称中心,即可求出结果.【详解】函数的图象上所有的点向右平移个单位长度后,可得函数的图像,又函数的图象关于对称,,,故,又,时,.故选C.【点睛】本题主要考查由平移后的函数性质求参数的问题,熟记正弦函数的对称性,以及函数的平移原则即可,属于常考题型.10、D【解析】
利用终点的坐标减去起点的坐标,即可得到向量的坐标.【详解】∵点,,∴向量,,.故选:D.【点睛】本题考查向量的坐标表示,考查运算求解能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
利用裂项求和法求出,取极限进而即可求解.【详解】,故,所以,故答案为:1【点睛】本题考查了裂项求和法以及求极限值,属于基础题.12、【解析】
根据等比数列的性质得到成等比,从而列出关系式,又,接着用表示,代入到关系式中,可求出的值.【详解】因为等比数列的前n项和为,则成等比,且,所以,又因为,即,所以,整理得.故答案为:.【点睛】本题考查学生灵活运用等比数列的性质化简求值,是一道基础题。解决本题的关键是根据等比数列的性质得到成等比.13、【解析】
根据题设条件,得到方程组,求得,即可得到答案.【详解】由题意,数列是等差数列,满足,,成等比数列,且,可得,即且,解得,所以.故答案为:.【点睛】本题主要考查了等差数列的通项公式,以及等比中项的应用,其中解答中熟练利用等差数列的通项公式和等比中项公式,列出方程组求解是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解析】
根据二倍角公式得出,再根据诱导公式即可得解.【详解】解:由题意知:故,即.故答案为.【点睛】本题考查了二倍角公式和诱导公式的应用,属于基础题.15、【解析】
由,,可知,、、成等比数列,可得出,由、、或、、成等差数列,可得出关于、的方程组,解出这两个未知数的值,即可计算出的值.【详解】由于,,若不是等比中项,则有或,两个等式左边均为正数,右边均为负数,不合题意,则必为等比中项,所以,将三个数由大到小依次排列,则有、、成等差数列或、、成等差数列.①若、、成等差数列,则,联立,解得,此时,;②若、、成等差数列,则,联立,解得,此时,.综上所述,.故答案为:.【点睛】本题考查等比数列和等差数列定义的应用,根据题意列出方程组是解题的关键,考查推理能力与计算能力,属于中等题.16、【解析】
先结合求出,再由求解即可【详解】由,则故答案为:【点睛】本题考查扇形的弧长和面积公式的使用,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】
由任意角的三角函数定义求得,再由诱导公式及同角的三角函数基本关系式求得,再由两角差的正弦求.【详解】由题意,,,又,所以,,则.【点睛】本题主要考查了任意角的三角函数定义,同角三角函数的关系,两角和差的正弦,属于中档题.18、【解析】试题分析:解:设,为实数,.为实数,,则.在第一象限,解得.考点:本题主要考查复数相等的充要条件,复数的代数表示法及其几何意义;复数代数形式的运算,不等式组解法.点评:主要运用复数的基础知识,具有一定综合性,中档题.19、(1);(2)或.【解析】
(1)直接根据圆的标准式方程,写出圆的方程即可;(2)设.由等于1.即,解得即可.【详解】解:(1)已知圆的半径是2,圆心为.圆的方程:;(2)设.的最大值等于7,等于1..解得或,即或.【点睛】本题考查了圆的方程,点与圆的位置关系,属于中档题.20、(1)选择C;(2)第4或第5年.【解析】
(1)根据已知求出三种树木六年末的高度,判断得解;(2)设为第年内树木生长的高度,先求出,设,则,.再利用分析函数的单调性,分析函数的图像得解.【详解】(1)由题意可知,A、B、C三种树木随着时间的增加,高度也在增加,6年末:A树木的高度为(米):B树木的高度为(米):C树木的高度为(米),所以选择C树木.(2)设为第年内树木生长的高度,则,所以,,.设,则,.令,因为在区间上是减函数,在区间上是增函数,所以当时,取得最小值,从而取得最大值,此时,解得,因为,,故的可能值为3或4,又,,即.因此,种植后第4或第5年内该树木生长最快.【点睛】本题主要考查等差数列和等比数列求和,考查函数的图像和性质的应用,意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024智慧城市交通信号控制系统优化合同
- 2025年度橙子包装设计与定制生产合同2篇
- 2025年度环保设备销售与服务合同4篇
- 2024版人身损害赔偿协议
- 二零二四年外墙清洗专业团队服务合同样本3篇
- 2024-2025学年高中地理第一章环境与环境问题第一节我们周围的环境课时分层作业含解析新人教版选修6
- 二零二五版城市综合体土方运输与临时堆场租赁合同3篇
- 二零二五年度餐饮业人力资源派遣合同范本3篇
- 2025年特色小镇物业经营权及配套设施合作合同3篇
- 二零二五版科技公司股份交易与税收筹划合同3篇
- 上海纽约大学自主招生面试试题综合素质答案技巧
- 办公家具项目实施方案、供货方案
- 2022年物流服务师职业技能竞赛理论题库(含答案)
- 危化品安全操作规程
- 连锁遗传和遗传作图
- DB63∕T 1885-2020 青海省城镇老旧小区综合改造技术规程
- 高边坡施工危险源辨识及分析
- 中海地产设计管理程序
- 简谱视唱15942
- 《城镇燃气设施运行、维护和抢修安全技术规程》(CJJ51-2006)
- 项目付款审核流程(visio流程图)
评论
0/150
提交评论