![2023-2024学年甘肃省泾川县第三中学高一数学第二学期期末联考模拟试题含解析_第1页](http://file4.renrendoc.com/view14/M07/0E/1E/wKhkGWZhTM-AUi7dAAInd8tj85E639.jpg)
![2023-2024学年甘肃省泾川县第三中学高一数学第二学期期末联考模拟试题含解析_第2页](http://file4.renrendoc.com/view14/M07/0E/1E/wKhkGWZhTM-AUi7dAAInd8tj85E6392.jpg)
![2023-2024学年甘肃省泾川县第三中学高一数学第二学期期末联考模拟试题含解析_第3页](http://file4.renrendoc.com/view14/M07/0E/1E/wKhkGWZhTM-AUi7dAAInd8tj85E6393.jpg)
![2023-2024学年甘肃省泾川县第三中学高一数学第二学期期末联考模拟试题含解析_第4页](http://file4.renrendoc.com/view14/M07/0E/1E/wKhkGWZhTM-AUi7dAAInd8tj85E6394.jpg)
![2023-2024学年甘肃省泾川县第三中学高一数学第二学期期末联考模拟试题含解析_第5页](http://file4.renrendoc.com/view14/M07/0E/1E/wKhkGWZhTM-AUi7dAAInd8tj85E6395.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年甘肃省泾川县第三中学高一数学第二学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.集合,,则中元素的个数为()A.0 B.1 C.2 D.32.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1500石,验得米内夹谷,抽样取米一把,数得250粒内夹谷30粒,则这批米内夹谷约为多少石?A.180 B.160 C.90 D.3603.某高中三个年级共有3000名学生,现采用分层抽样的方法从高一、高二、高三年级的全体学生中抽取一个容量为30的样本进行视力健康检查,若抽到的高一年级学生人数与高二年级学生人数之比为3∶2,抽到高三年级学生10人,则该校高二年级学生人数为()A.600 B.800 C.1000 D.12004.的斜二测直观图如图所示,则原的面积为()A. B.1 C. D.25.在ΔABC中,角A,B,C所对的边分别为a,b,c,若A=π3,B=π4,A.23 B.2 C.3 D.6.如图所示,AB是半圆O的直径,VA垂直于半圆O所在的平面,点C是圆周上不同于A,B的任意一点,M,N分别为VA,VC的中点,则下列结论正确的是()A.MN//AB B.平面VAC⊥平面VBCC.MN与BC所成的角为45° D.OC⊥平面VAC7.在数列{an}中,若a1,且对任意的n∈N*有,则数列{an}前10项的和为()A. B. C. D.8.直线的倾斜角的大小为()A. B. C. D.9.已知函数和的定义域都是,则它们的图像围成的区域面积是()A. B. C. D.10.已知圆锥的母线长为8,底面圆周长为,则它的体积是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,且与垂直,则的值为______.12.设三棱锥满足,,则该三棱锥的体积的最大值为____________.13.在正四面体中,棱与所成角大小为________.14.古希腊数学家阿波罗尼斯在他的巨著《圆锥曲线论》中有一个著名的几何问题:在平面上给定两点,,动点满足(其中和是正常数,且),则的轨迹是一个圆,这个圆称之为“阿波罗尼斯圆”,该圆的半径为__________.15.函数的最小正周期为______________.16.若实数满足,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,已知圆和圆.(1)若直线过点,且被圆截得的弦长为,求直线的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标.18.共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了50人就该城市共享单车的推行情况进行问卷调査,并将问卷中的这50人根据其满意度评分值(百分制)按照分成5组,请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:频率分布表组别分组频数频率第1组80.16第2组▆第3组200.40第4组▆0.08第5组2合计▆▆(1)求的值;(2)若在满意度评分值为的人中随机抽取2人进行座谈,求所抽取的2人中至少一人来自第5组的概率.19.如图,某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道(三条边,是直角顶点)来处理污水,管道越长,污水净化效果越好.要求管道的接口是的中点,分别落在线段上,已知米,米,记.(1)试将污水净化管道的总长度(即的周长)表示为的函数,并求出定义域;(2)问取何值时,污水净化效果最好?并求出此时管道的总长度.20.如图,在四棱锥中,底面为矩形,为等边三角形,且平面平面.为的中点,为的中点,过点,,的平面交于.(1)求证:平面;(2)若时,求二面角的余弦值.21.在中,角的平分线交于点D,是面积的倍.(I)求的值;(II)若,,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】,则,所以,元素个数为2个。故选C。2、A【解析】
根据数得250粒内夹谷30粒,根据比例,即可求得结论。【详解】设批米内夹谷约为x石,则,解得:选A。【点睛】此题考查简单随机抽样,根据部分的比重计算整体值。3、B【解析】
根据题意可设抽到高一和高二年级学生人数分别为和,则,继而算出抽到的各年级人数,再根据分层抽样的原理可以推得该校高二年级的人数.【详解】根据题意可设抽到高一和高二年级学生人数分别为和,则,即,所以高一年级和高二年级抽到的人数分别是12人和8人,则该校高二年级学生人数为人.故选:.【点睛】本题考查分层抽样的方法,属于容易题.4、D【解析】
根据直观图可计算其面积为,原的面积为,由得结论.【详解】由题意可得,所以由,即.故选:D.【点睛】本题考查了斜二侧画直观图,三角形的面积公式,需要注意的是与原图与直观图的面积之比为,属于基础题.5、A【解析】
利用正弦定理asinA=【详解】在ΔABC中,由正弦定理得asinA=故选:A.【点睛】本题考查利用正弦定理求边,要记得正弦定理所适用的基本类型,考查计算能力,属于基础题。6、B【解析】
对每一个选项逐一分析判断得解.【详解】A.∵M,N分别为VA,VC的中点,∴MN//AC,又AC⊥BC,∴MN与BC所成的角为90°,故C不正确;∵MN//AC,AC∩AB=A,∴MN//AB不成立,故A不正确.B.∵AB是⊙O的直径,点C是圆周上不同于A,B的任意一点,∴AC⊥BC,∵VA垂直⊙O所在的平面,BC⊂⊙O所在的平面,∴VA⊥BC,又AC∩VA=A,∴BC⊥平面VAC,又BC⊂平面VBC,∴平面VAC⊥平面VBC,故B正确;C.∵AB是⊙O的直径,点C是圆周上不同于A,B的任意一点,∴AC⊥BC,又A、B、C、O共面,∴OC与AC不垂直,∴OC⊥平面VAC不成立,故B不正确;∵M,N分别为VA,VC的中点,∴MN//AC,又AC⊥BC,∴MN与BC所成的角为90°,故C不正确;D.∵AB是⊙O的直径,点C是圆周上不同于A,B的任意一点,∴AC⊥BC,又A、B、C、O共面,∴OC与AC不垂直,∴OC⊥平面VAC不成立,故D不正确.故选B.【点睛】本题主要考查空间位置关系的证明,考查异面直线所成的角的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.7、A【解析】
用累乘法可得.利用错位相减法可得S,即可求解S10=22.【详解】∵,则.∴,.Sn,.∴,∴S,则S10=22.故选:A.【点评】本题考查了累乘法求通项,考查了错位相减法求和,意在考查计算能力,属于中档题.8、B【解析】
由直线方程,可知直线的斜率,设直线的倾斜角为,则,又,所以,故选.9、C【解析】
由可得,所以的图像是以原点为圆心,为半径的圆的上半部分;再结合图形求解.【详解】由可得,作出两个函数的图像如下:则区域①的面积等于区域②的面积,所以他们的图像围成的区域面积为半圆的面积,即.故选C.【点睛】本题考查函数图形的性质,关键在于的识别.10、D【解析】
圆锥的底面周长,求出底面半径,然后求出圆锥的高,即可求出圆锥的体积.【详解】∵圆锥的底面周长为
∴圆锥的底面半径
双∵圆锥的母线长∴圆锥的高为∴圆锥的体积为故选D.【点睛】本题是基础题,考查计算能力,圆锥的高的求法,熟练掌握公式是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据与垂直即可得出,进行数量积的坐标运算即可求出x的值.【详解】;;.故答案为.【点睛】本题考查向量垂直的充要条件,以及向量数量积的坐标运算,属于基础题.12、【解析】
取中点,连,可证平面,,要使最大,只需求最大值,即可求解.【详解】取中点,连,所以,,,平面,平面,设中边上的高为,,当且仅当时,取等号.故答案为:.【点睛】本题考查锥体的体积计算,考查线面垂直的判定,属于中档题.13、【解析】
根据正四面体的结构特征,取中点,连,,利用线面垂直的判定证得平面,进而得到,即可得到答案.【详解】如图所示,取中点,连,,正四面体是四个全等正三角形围成的空间封闭图形,所有棱长都相等,所以,,且,所以平面,又由平面,所以,所以棱与所成角为.【点睛】本题主要考查了异面直线所成角的求解,以及直线与平面垂直的判定及应用,着重考查了推理与论证能力,属于基础题.14、【解析】
设,由动点满足(其中和是正常数,且),可得,化简整理可得.【详解】设,由动点满足(其中和是正常数,且),所以,化简得,即,所以该圆半径故该圆的半径为.【点睛】本题考查圆方程的标准形式和两点距离公式,难点主要在于计算.15、【解析】
利用函数y=Atan(ωx+φ)的周期为,得出结论.【详解】函数y=3tan(3x)的最小正周期是,故答案为:.【点睛】本题主要考查函数y=Atan(ωx+φ)的周期性,利用了函数y=Atan(ωx+φ)的周期为.16、【解析】
由反正弦函数的定义求解.【详解】∵,∴,,∴,∴.故答案为:.【点睛】本题考查反正弦函数,解题时注意反正弦函数的取值范围是,结合诱导公式求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或,(2)点P坐标为或.【解析】(1)设直线l的方程为y=k(x-4),即kx-y-4k=0.由垂径定理,得圆心C1到直线l的距离d==1,结合点到直线距离公式,得=1,化简得24k2+7k=0,解得k=0或k=-.所求直线l的方程为y=0或y=-(x-4),即y=0或7x+24y-28=0.(2)设点P坐标为(m,n),直线l1、l2的方程分别为y-n=k(x-m),y-n=-(x-m),即kx-y+n-km=0,-x-y+n+m=0.因为直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,两圆半径相等.由垂径定理,得圆心C1到直线l1与圆心C2到直线l2的距离相等.故有,化简得(2-m-n)k=m-n-3或(m-n+8)k=m+n-5.因为关于k的方程有无穷多解,所以有解得点P坐标为或.18、(1);(2).【解析】
(1)根据频率分布表可得b.先求得内的频数,即可由总数减去其余部分求得.结合频率分布直方图,即可求得的值.(2)根据频率分布表可知在内有4人,在有2人.列举出从这6人中选取2人的所有可能,由古典概型概率计算公式即可求解.【详解】(1)由频率分布表可得内的频数为,∴∴内的频率为∴∵内的频率为0.04∴(2)由题意可知,第4组共有4人,第5组共有2人,设第4组的4人分别为、、、;第5组的2人分别为、从中任取2人的所有基本事件为:,,,,,,,,,,,,,,共15个.至少一人来自第5组的基本事件有:,,,,,,,共9个.所以.∴所抽取2人中至少一人来自第5组的概率为.【点睛】本题考查了频率分布表及频率分布直方图的应用,列举法表示事件的可能,古典概型概率计算方法,属于基础题.19、(1),;(2)或时,L取得最大值为米..【解析】
(1)解直角三角形求得得EH、FH、EF的解析式,再由L=EH+FH+EF得到污水净化管道的长度L的函数解析式,并注明θ的范围.(2)设sinθ+cosθ=t,根据函数L=在[,]上是单调减函数,可求得L的最大值.所以当时,即
或
时,L取得最大值为米.【详解】由题意可得,,,由于
,,所以,,,即,设,则,由于,由于在上是单调减函数,当时,即或时,L取得最大值为米.【点睛】三角函数值域得不同求法:1.利用和的值域直接求2.把所有的三角函数式变换成的形式求值域3.通过换元,转化成其他类型函数求值域20、(1)证明见解析;(2)【解析】
(1)首先证明平面,由平面平面,可说明,由此可得四边形为平行四边形,即可证明平面;(2)延长交于点,过点作交直线于点,则即为二面角的平面角,求出的余弦值即可得到答案.【详解】(1)∵为矩形∴,平面,平面∴平面.又因为平面平面,∴.为中点,为中点,所以平行且等于,即四边形为平行四边形所以,平面,平面所以平面(2)不妨设,.因为为中点,为等边三角形,所以,,且∵,所以有平面,故因为平面平面∴平面,又,∴平面,则延长交于点,过点作交直线于点,由于平行且等于,所以为中点,,由于,,,所以平面,则,所以即为二面角的平面角在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度环保设备购销合同样本及格式说明
- 2025年度进出口贸易电子商务平台运营服务合同
- 发热管项目融资计划书
- 邢台2024年河北邢台广宗县招聘事业单位工作人员38人笔试历年参考题库附带答案详解
- 盐城2025年江苏省盐城市教育局直属学校招聘教师14人笔试历年参考题库附带答案详解
- 潍坊2025年山东潍坊市产业技术研究院招聘7人笔试历年参考题库附带答案详解
- 楚雄云南楚雄州消防救援局招聘6人笔试历年参考题库附带答案详解
- 株洲2025年湖南株洲市芦淞区面向应届生招聘教师30人笔试历年参考题库附带答案详解
- 杭州2025年浙江杭州市临安区高虹镇人民政府招聘编外聘用人员笔试历年参考题库附带答案详解
- 普洱云南普洱市消防救援支队专职消防员消防文员招录笔试历年参考题库附带答案详解
- 2023六年级数学下册 第2单元 百分数(二)综合与实践 生活与百分数说课稿 新人教版
- 2025年1月浙江省高考政治试卷(含答案)
- 教体局校车安全管理培训
- 湖北省十堰市城区2024-2025学年九年级上学期期末质量检测综合物理试题(含答案)
- 行车起重作业风险分析及管控措施
- 健康体检中心患者身份登记制度
- 《灾害的概述》课件
- 国产氟塑料流体控制件生产企业
- 空气能安装合同
- 初二上册的数学试卷
- 四大名绣课件-高一上学期中华传统文化主题班会
评论
0/150
提交评论