版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高二上学期期中考试数学试卷(一)(本卷满分150分,考试时间120分钟)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。4.考试结束后,请将本试题卷和答题卡一并上交。第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列关于抛物线的图象描述正确的是()A.开口向上,焦点为 B.开口向右,焦点为C.开口向上,焦点为 D.开口向右,焦点为2.在等差数列中,已知,,若时,则项数等于()A.96 B.99 C.100 D.1013.命题,,则命题的否定是()A., B.,C., D.,4.若,,则与的大小关系为()A. B. C. D.不能确定5.如果是的必要不充分条件,是的充分必要条件,是的充分不必要条件,那么是的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件6.若双曲线的方程为,其焦点在轴上,焦距为4,则实数等于()A.2 B.3 C.4 D.57.在等差数列中,,,记,则数列()A.有最大项,有最小项 B.有最大项,无最小项C.无最大项,有最小项 D.无最大项,无最小项8.已知在中,角所对的边分别是,,若,则的周长的取值范围是()A. B. C. D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知,,且,则()A. B. C. D.10.已知,,下列四个结论正确的是()A.的图象向左平移个单位长度,即可得到的图象B.当时,函数取得最大值C.图象的对称中心是,D.在区间上单调递增11.已知曲线()A.若,则是椭圆,其焦点在轴上B.若,则是圆,其半径为C.若,则是双曲线,其渐近线方程为D.若,,则是两条直线12.在数列中,若,(,,为常数),则称为“等方差数列”.下列对“等方差数列”的判断正确的是()A.若是等差数列,则是等方差数列B.是等方差数列C.若是等方差数列,则(,为常数)也是等方差数列D.若既是等方差数列,又是等差数列,则该数列为常数列第Ⅱ卷三、填空题:本大题共4小题,每小题5分.13.已知集合,集合,若“”是“”的充分不必要条件,则实数的取值范围是_____.14.双曲线的一个焦点为,其渐近线方程为,则双曲线的标准方程为_________.15.若不等式对任意,恒成立,则实数的取值范围是____.16.《九章算术》中有一题:今有牛、马、羊食人苗,苗主责之栗五斗,羊主曰:“我羊食半马,”马主曰:“我马食半牛”,今欲衰偿之,问各出几何?其意为:今有牛、马、羊吃了别人的禾苗,苗主人要求赔偿五斗栗,羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半”;现打算按此比例偿还,问牛的主人应赔偿_____斗栗,羊的主人应赔偿_______斗栗.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)在①,,成等差数列;②,,成等差数列;③中任选一个,补充在下列问题中,并解答.在各项均为正数等比数列中,前项和为,已知,且______.(1)求数列的通项公式;(2)数列的通项公式,,求数列的前项和.18.(12分)(1)若不等式对任意的都成立,求的取值范围;(2)求函数的最大值.19.(12分)已知抛物线(),其上一点到的焦点的距离为4.(1)求抛物线的方程;(2)过点的直线与抛物线分別交于,两点(点,均在轴的上方),若的面积为4,求直线的方程.20.(12分)某国营企业集团公司现有员工1000名,平均每人每年创造利润10万元.为了激化内部活力,增强企业竞争力,集团公司董事会决定优化产业结构,调整出()名员工从事第三产业;调整后,他们平均每人每年创造利润万元,剩下的员工平均每人每年创造的利润可以提高%.(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,则实数的取值范围是多少?21.(12分)数列的前项和为,,且,,成等差数列.(1)求的值;(2)证明:为等比数列,并求数列的通项公式;(3)设,若对任意的,不等式恒成立,试求实数的取值范围.22.(12分)圆()过点,离心率为,其左、右焦点分别为,,且过焦点的直线交椭圆于,.(1)求椭圆的方程;(2)若点的坐标为,设直线与直线的斜率分别为,试证明:.答案解析第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】A【解析】抛物线,即,可知抛物线的开口向上,焦点坐标为.2.【答案】B【解析】在等差数列中,,,,当时,则,解得,故选B.3.【答案】C【解析】命题,,否定时将量词“”变为,再将不等号变为即可,则命题的否定为,,故选C.4.【答案】A【解析】,,,,故选A.5.【答案】A【解析】根据题意得,推不出,,,推不出,,即,但是推不出,推不出,则推不出,是的必要不充分条件,故选A.6.【答案】C【解析】双曲线的焦点在轴上,,解得,又双曲线的焦距为4,,解得,经检验,符合题意,故选C.7.【答案】B【解析】数列为等差数列,,,∴,∴数列为递增数列,∴当时,;当时,.∴当时,;当时,,且,∴数列有最大项,无最小项,∴数列有最大项,无最小项.8.【答案】A【解析】由,可得,即,,由余弦定理得,,又,,即的周长的取值范围是.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.【答案】ABD【解析】∵,,且,因为,∴.A:,A对;B:,,∵,∴,∴,B对;C:,C错;D:,∴,D对.10.【答案】CD【解析】A项,的图象向左平移个单位长度可得,而,故A错误;B项,令,则,当时,,故B错误;C项,,令,.函数图象的对称中心是,故C正确;D项,,当时,,此时函数单调递增,故D正确,故选CD.11.【答案】ACD【解析】由曲线,得其标准形式为,A中,若,则,表示焦点在轴上的椭圆;B中,若,则,表示圆心在原点,半径为的圆;C中,若,则,异号,表示双曲线,渐近线方程为;D中,若,,则,表示两条直线.12.【答案】BCD【解析】对于A选项,取,则不是常数,则不是等方差数列,A选项中的结论错误;对于B选项,为常数,则是等方差数列,B选项中的结论正确;对于C选项,若是等方差数列,则存在常数,使得,则数列为等差数列,所以,则数列(,为常数)也是等方差数列,C选项中的结论正确;对于D选项,若数列为等差数列,设其公差为,则存在,使得,则,由于数列也为等方差数列,所以,存在实数,使得,则对任意的恒成立,则,得,此时,数列为常数列,D选项正确,故选BCD.第Ⅱ卷三、填空题:本大题共4小题,每小题5分.13.【答案】【解析】由集合,得,解得,,“”是“”的充分不必要条件,集合是集合的真子集,,故答案为.14.【答案】【解析】双曲线的一个焦点为,其渐近线方程为,所以焦点在轴上,设标准方程为,且,,解得,,所以双曲线的标准方程为,故答案为.15.【答案】【解析】不等式对任意,恒成立,,,,,,由基本不等式得,(当且仅当,即时取等号),,,解得,的取值范围为,故答案为.16.【答案】,【解析】由题意设牛主应赔偿,马主赔偿,羊主应赔偿,则,,成公比为2的等比数列,所以,解得,所以,故答案为,.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)见解析;(2).【解析】设等比数列的公比为,(1)选①:因为,,成等差数列,所以,因为,所以,,,所以,即,又,解得,所以.选②:因为,,成等差数列,所以,即,化简得,所以,即,又,解得,所以.选③:因为,所以,则,所以,,,经验证符合.(2)因为,,则.18.【答案】(1);(2).【解析】(1)由已知可得,对任意都成立,又∵,当且仅当时等号成立,∴,∴的取值范围是.(2)令,则,∴,当,即时,;当,即时,,当且仅当,即时等号成立,∴的最大值为.19.【答案】(1);(2).【解析】(1)抛物线:()上一点到的焦点的距离为4,由抛物线的定义,得,解得,所求抛物线的方程为.(2)由题意知,直线的斜率一定存在.①当直线的斜率为0时,直线与抛物线只有一个交点,不合题意;②当直线的斜率不为0时,依题意,设直线,设点,.点均在轴的上方,,,,由(1)知抛物线的焦点,则.联立直线的方程与抛物线的方程,即,消去并整理得.由,得(因为),且有,,,解得或,又,,,直线的方程为.20.【答案】(1)500名;(2).【解析】(1)由题意,得,整理得,解得,又,,最多调整出500名员工从事第三产业.(2)从事第三产业的员工创造的年总利润为万元,从事原来产业的员工的年总利润为万元.则由题意,知,当时,恒有,整理得在时恒成立.,当且仅当,即时等号成立,,又,,的取值范围是.21.【答案】(1);(2)证明见解析,;(3).【解析】(1)在,中,令,得,即,①又②则由①②解得.(2)当时,由,得到,则,又,则,是以为首项,为公比的等比数列,,即.(3)当恒成立时,即()恒成立,设(),当时,恒成立,则满足条件;当时,由二次函数性质知不恒成立;当时,由于对称轴,则在上单调递减,恒成立,则满足条件,综上所述,实数λ的取值范围是.22.【答案】(1);(2)证明见解析.【解析】(1)椭圆()过点,.①又椭圆离心率为,,.②联立①②得,解得,椭圆的方程为.(2)方法一:当直线斜率不存在时,则,;当直线斜率存在时,设直线,与椭圆交点,.联立,消去并整理得.由于,,,,,,综上所述,.方法二:当直线斜率为0时,,则;当直线斜率不为0时,设直线设与椭圆交点,,联立,消去并整理得.由于,,,,,综上所述,.高二上学期期中考试数学试卷(二)(本卷满分150分,考试时间120分钟)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果命题,命题,那么命题是命题的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.在平面内,到直线与到定点的距离相等的点的轨迹是A.抛物线B.双曲线C.椭圆D.直线3.在等差数列中,,则A.2B.3C.4D.54.已知等比数列的各项均为正实数,其前项和为,若,,则A.32 B.31 C.64 D.635.若椭圆的焦距为2,则实数的值为A.5 B.2 C.2或9 D.5或76.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为A.184 B.174 C.188 D.1607.已知数列满足,.设,,且数列是单调递增数列,则实数的取值范围是A. B. C. D.8.数列是等差数列,,数列满足,,设为的前项和,则当取得最大值时,的值等于A.9B.10C.11D.12二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.设等差数列的前项和为,若,,则有A.B.C.D.10.已知双曲线过点且渐近线方程为,则下列结论正确的是A.双曲线的方程为 B.双曲线的离心率为C.曲线经过双曲线的一个焦点 D.焦点到渐近线的距离为11.下列说法正确的是A.“”是“”的必要不充分条件B.“”是“”的充分不必要条件C.“”是“成等比数列”的充要条件D.设是公比为的等比数列,则“”是“为递增数列”的充分必要条件12.已知两监测点间距离为800米,且监测点听到爆炸声的时间比监测点迟2秒,设声速为340米/秒,下列说法正确的是A.爆炸点在以为焦点的椭圆上B.爆炸点在以为焦点的双曲线的一支上C.若监测点的声强是监测点的4倍(声强与距离的平方成反比),则爆炸点到监测点的距离为米D.若监测点的声强是监测点的4倍(声强与距离的平方成反比),则爆炸点到监测点的距离为米三、填空题:本题共4小题,每小题5分,共20分.请把答案直接填写在答题卡相应位置上.13.命题“”的否定是.14.椭圆的右焦点为,以点为焦点的抛物线的标准方程是.15.已知是椭圆的一个焦点,为椭圆上一点,为坐标原点,若为等边三角形,则椭圆的离心率为.16.如图,在中,,点为的中点,点为线段垂直平分线上的一点,且,固定边,在平面内移动顶点,使得的内切圆始终与切于线段的中点,且在直线的异侧,在移动过程中,当取得最大值时,的面积为.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答。解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知公差不为零的等差数列的前项和为,且成等比数列.(1)求的通项公式;(2)已知,求数列的前项和.18.(本小题满分10分)已知命题:“曲线表示焦点在轴上的椭圆”,命题:“曲线表示双曲线”.(1)若是真命题,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.19.(本小题满分12分)已知直线与椭圆交于两点.在,条件下,求的面积的最大值;当,时,求直线的方程.20.(本小题满分12分)已知各项均为正数的数列,其前项和为,满足.(1)求数列的通项公式;(2)若,求数列的前项和.21.(本小题满分12分)某同学尝试用数学模型来说明隔离和医疗两大因素在对抗传染病时的作用.模型假设如下:假设1、传染病在人群中的表现有潜伏期和爆发期两种形式,潜伏期无症状,爆发期可以被人识别,无论在潜伏期还是爆发期的病人都具有相同的传染性.潜伏期时间记为m0,以潜伏期时间m0为一个传染周期;假设2、记r0为一个病人在一个传染周期内平均感染人数;假设3、某一固定区域(如某个城市)的人群,保持原有的生活习惯,即r0不变.(1)第一模型:无干预模型.在上述模型假设中,取m0=1天,r0=1.2,假设初始的潜伏期人数为1万人,那么1天后将有1万人处于爆发期,1.2万人处于潜伏期,感染总人数为2.2万人,…,请问9天后感染总人数是多少?(2)第二模型:无限医疗模型.增加两个模型假设:假设4、政府和社会加大医疗投入,将所有爆发期的病人“应收尽收”;假设5、潜伏期病人在传染健康人群后转为爆发期病人,然后被收入医院,收入医院的病人即失去传染性;在第二模型中,取m0=1天,r0=1.2,假设初始的潜伏期人数为1万人,请问多少天后感染总人数将超过1000万?(参考数据:,,,,,,).22.(本小题满分14分)已知椭圆的离心率为,椭圆的上顶点到右顶点的距离为,为坐标原点.(1)求椭圆的标准方程;(2)若是椭圆上两点(异于顶点),且的面积为,设射线,的斜率分别为,求的值;(3)设直线与椭圆交于两点(直线不过顶点),且以线段为直径的圆过椭圆的右顶点,求证:直线过定点.答案解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果命题,命题,那么命题是命题的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:A解析:∵,但,∴命题是命题的充分不必要条件,故选A.2.在平面内,到直线与到定点的距离相等的点的轨迹是A.抛物线B.双曲线C.椭圆D.直线答案:A解析:根据抛物线的定义即可判断出来,选A.3.在等差数列中,,则A.2B.3C.4D.5答案:C解析:,∴.4.已知等比数列的各项均为正实数,其前项和为,若,,则A.32 B.31 C.64 D.63答案:B解析:数列的各项均为正实数,,∴.5.若椭圆的焦距为2,则实数的值为A.5B.2C.2或9D.5或7答案:D解析:9﹣(m+3)=±1,解得m=5或7.6.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为A.184 B.174 C.188 D.160答案:B解析:由题意知:,故数列是以1为首项,1为公差的等差数列,故,,所以.7.已知数列满足,.设,,且数列是单调递增数列,则实数的取值范围是A. B. C. D.答案:C解析:,,对恒成立,参变分离得,,故选C.8.数列是等差数列,,数列满足,,设为的前项和,则当取得最大值时,的值等于A.9B.10C.11D.12答案:D解析:,,当1≤n≤13时,>0;当n≥14时,<0,又,故当n=12时,取得最大值.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.设等差数列的前项和为,若,,则有A.B.C.D.答案:AC解析:,,,.10.已知双曲线过点且渐近线方程为,则下列结论正确的是A.双曲线的方程为 B.双曲线的离心率为C.曲线经过双曲线的一个焦点 D.焦点到渐近线的距离为答案:ACD解析:设双曲线方程为:,双曲线C过点,,即,所以双曲线C的方程为,A正确;,故B错误;曲线经过点(2,0),该点为双曲线的右焦点,故C正确;焦点到渐近线的距离为1,故D正确.故选ACD.11.下列说法正确的是A.“”是“”的必要不充分条件B.“”是“”的充分不必要条件C.“”是“成等比数列”的充要条件D.设是公比为的等比数列,则“”是“为递增数列”的充分必要条件答案:AB解析:∵,,故A正确;∵,,故B正确;当a=b=c=0时,不成等比数列,故C错误;当,时,等比数列为递减数列,故D错误.故选AB.12.已知两监测点间距离为800米,且监测点听到爆炸声的时间比监测点迟2秒,设声速为340米/秒,下列说法正确的是A.爆炸点在以为焦点的椭圆上B.爆炸点在以为焦点的双曲线的一支上C.若监测点的声强是监测点的4倍(声强与距离的平方成反比),则爆炸点到监测点的距离为米D.若监测点的声强是监测点的4倍(声强与距离的平方成反比),则爆炸点到监测点的距离为米答案:BD解析:设爆炸点为P,由题意知PA﹣PB=680,故爆炸点在以为焦点的双曲线的一支上,A错,B正确;若监测点的声强是监测点的4倍(声强与距离的平方成反比),∴PA2=4PB2,即PA=2PB,∵PA﹣PB=680,∴PB=680,故C错,D正确.故选BD.三、填空题:本题共4小题,每小题5分,共20分.请把答案直接填写在答题卡相应位置上.13.命题“”的否定是.答案:解析:全称量词命题的否定,首先全称量词变为存在量词,其次否定结论.14.椭圆的右焦点为,以点为焦点的抛物线的标准方程是.答案:解析:首先求得F(,0),则抛物线方程为.15.已知是椭圆的一个焦点,为椭圆上一点,为坐标原点,若为等边三角形,则椭圆的离心率为.答案:解析:由题意知点(,)在椭圆上,所以,,,.16.如图,在中,,点为的中点,点为线段垂直平分线上的一点,且,固定边,在平面内移动顶点,使得的内切圆始终与切于线段的中点,且在直线的异侧,在移动过程中,当取得最大值时,的面积为.答案:解析:首先判断出点C在以A、B为焦点的双曲线的右支上,以E为坐标原点建立平面直角坐标系,得动点C的轨迹方程为:,从而CA﹣CB=2,CD﹣CA=CD﹣CB﹣2,当C、B、D三点共线时取最大值,此时求得点C纵坐标为,此时三角形ABC的面积为.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答。解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知公差不为零的等差数列的前项和为,且成等比数列.(1)求的通项公式;(2)已知,求数列的前项和.解:(1)设公差为,由成等比数列所以,所以,所以,所以所以由(1)得,所以所以所以18.(本小题满分10分)已知命题:“曲线表示焦点在轴上的椭圆”,命题:“曲线表示双曲线”.(1)若是真命题,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.解:(1)若是真命题,所以所以的取值范围是。由(1)得,是真命题时,的取值范围是为真命题时,,所以的取值范围是因为是的必要不充分条件,所以,所以,等号不同时取得所以19.(本小题满分12分)已知直线与椭圆交于两点.在,条件下,求的面积的最大值;当,时,求直线的方程.解:当时,,所以两点关于轴对称,设,所以所以所以当且仅当,即,等号成立,所以的面积的最大值为1当时,设,得所以,所以又因为所以,所以所以直线的方程为20.(本小题满分12分)已知各项均为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年沪科版必修3英语上册月考试卷含答案
- 2025年外研版2024选修2地理上册阶段测试试卷
- 二零二五版门卫值班人员设备维护聘用合同4篇
- 2025年度新能源汽车电池回收与利用分包合同4篇
- 二零二五年度智能物流解决方案内部销售承包合同4篇
- 二零二五年度木门行业环保标准采购合同2篇
- 《包装设计》 案例赏析 第4章 香生记品牌包装设计
- 2025版内退员工劳动合同范本:食品行业专用4篇
- 2025年度影视基地租赁合同范本及知识产权保护协议3篇
- 2025年农场农业废弃物回收利用服务合同4篇
- 平安产险陕西省地方财政生猪价格保险条款
- 铜矿成矿作用与地质环境分析
- 30题纪检监察位岗位常见面试问题含HR问题考察点及参考回答
- 询价函模板(非常详尽)
- 《AI营销画布:数字化营销的落地与实战》
- 麻醉药品、精神药品、放射性药品、医疗用毒性药品及药品类易制毒化学品等特殊管理药品的使用与管理规章制度
- 一个28岁的漂亮小媳妇在某公司打工-被老板看上之后
- 乘务培训4有限时间水上迫降
- 2023年低年级写话教学评语方法(五篇)
- DB22T 1655-2012结直肠外科术前肠道准备技术要求
- GB/T 16474-2011变形铝及铝合金牌号表示方法
评论
0/150
提交评论