版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省高密市2025届数学高一下期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,图象的一部分如图所示的是()A. B.C. D.2.已知是的共轭复数,若复数,则在复平面内对应的点是()A. B. C. D.3.在正方体中,异面直线与所成角的大小为()A. B. C. D.4.棱柱的侧面一定是()A.平行四边形 B.矩形 C.正方形 D.菱形5.圆锥的母线长为,侧面展开图为一个半圆,则该圆锥表面积为()A. B. C. D.6.在面积为S的△ABC的边AB上任取一点P,则△PBC的面积大于的概率是()A. B. C. D.7.若在是减函数,则的最大值是A. B. C. D.8.在边长为2的菱形中,,是的中点,则A. B. C. D.9.已知数列,其前n项和为,且,则的值是()A.4 B.8 C.2 D.910.如图所示是正方体的平面展开图,在这个正方体中CN与BM所成角为()A.30° B.45° C.60° D.90°二、填空题:本大题共6小题,每小题5分,共30分。11.将边长为2的正沿边上的高折成直二面角,则三棱锥的外接球的表面积为.12.若无穷等比数列的各项和等于,则的取值范围是_____.13.设等比数列的公比,前项和为,则.14.在平面直角坐标系xOy中,若直线与直线平行,则实数a的值为______.15.对任意实数,不等式恒成立,则实数的取值范围是____.16.在中,,,则角_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.甲、乙两台机床同时加工直径为10cm的零件,为了检验零件的质量,从零件中各随机抽取6件测量,测得数据如下(单位:mm):甲:99,100,98,100,100,103;乙:99,100,102,99,100,100.(1)分别计算上述两组数据的平均数和方差(2)根据(1)的计算结果,说明哪一台机床加工的零件更符合要求.18.已知⊙C经过点、两点,且圆心C在直线上.(1)求⊙C的方程;(2)若直线与⊙C总有公共点,求实数的取值范围.19.在中,角,,所对的边分别为,,,且,.(1)求证:是锐角三角形;(2)若,求的面积.20.在平面直角坐标系中,已知圆的方程为,过点的直线与圆交于两点,.(1)若,求直线的方程;(2)若直线与轴交于点,设,,,R,求的值.21.已知点,,动点满足,记M的轨迹为曲线C.(1)求曲线C的方程;(2)过坐标原点O的直线l交C于P、Q两点,点P在第一象限,轴,垂足为H.连结QH并延长交C于点R.(i)设O到直线QH的距离为d.求d的取值范围;(ii)求面积的最大值及此时直线l的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
设图中对应三角函数最小正周期为T,从图象看出,T=,所以函数的最小正周期为π,函数应为y=向左平移了个单位,即=,选D.2、A【解析】由,得,所以在复平面内对应的点为,故选A.3、C【解析】
连接、,可证四边形为平行四边形,得,得(或补角)就是异面直线与所成角,由正方体的性质即可得到答案.【详解】连接、,如下图:在正方体中,且;四边形为平行四边形,则;(或补角)就是异面直线与所成角;又在正方体中,,为等边三角形,,即异面直线与所成角的大小为;故答案选C【点睛】本题考查正方体中异面直线所成角的大小,属于基础题.4、A【解析】根据棱柱的性质可得:其侧面一定是平行四边形,故选A.5、B【解析】
由圆锥展开图为半径为的半圆,得出其弧长等于圆锥的底面圆周长,可得出圆锥底面圆的半径,然后利用圆锥的表面积公式可计算出圆锥的表面积.【详解】一个圆锥的母线长为,它的侧面展开图为半圆,半圆的弧长为,即圆锥的底面周长为,设圆锥的底面半径是,则得到,解得,这个圆锥的底面半径是,圆锥的表面积为.故选:B.【点睛】本题考查圆锥表面积的计算,计算时要结合已知条件列等式计算出圆锥的相关几何量,考查运算求解能力,属于中等题.6、C【解析】
记事件,基本事件是线段的长度,如下图所示,作于,作于,根据三角形的面积关系得,再由三角形的相似性得,可得事件的几何度量为线段的长度,可求得其概率.【详解】记事件,基本事件是线段的长度,如下图所示,作于,作于,因为,则有;化简得:,因为,则由三角形的相似性得,所以,事件的几何度量为线段的长度,因为,所以的面积大于的概率.故选:C【点睛】本题考查几何概型,属于基础题.常有以下一些方面需考虑几何概型,求解时需注意一些要点.(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域。(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用"比例解法求解几何概型的概率.7、A【解析】
分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值.详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1).(2)周期(3)由求对称轴,(4)由求增区间;由求减区间.8、D【解析】
选取向量为基底,用基底表示,然后计算.【详解】由题意,,.故选D.【点睛】本题考查向量的数量积,平面向量的线性运算,解题关键是选取基底,把向量用基底表示.9、A【解析】
根据求解.【详解】由题得.故选:A【点睛】本题主要考查数列和的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.10、C【解析】
把展开图再还原成正方体如图所示:由于BE和CN平行且相等,故∠EBM(或其补角)为所求.再由△BEM是等边三角形,可得∠EBM=60°,从而得出结论.【详解】把展开图再还原成正方体如图所示:由于BE和CN平行且相等,故异面直线CN与BM所成的角就是BE和BM所成的角,故∠EBM(或其补角)为所求,再由BEM是等边三角形,可得∠EBM=60,故选:C【点睛】本题主要考查了求异面直线所成的角,体现了转化的数学思想,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
解:根据题意可知三棱锥B﹣ACD的三条侧棱BD、DC、DA两两互相垂直,所以它的外接球就是它扩展为长方体的外接球,∵长方体的对角线的长为:,∴球的直径是,半径为,∴三棱锥B﹣ACD的外接球的表面积为:4π5π.故答案为5π考点:外接球.12、.【解析】
根据题意可知,,从而得出,再由,即可求出的取值范围.【详解】解:由题意可知,,且,,,,或,故的取值范围是,故答案为:.【点睛】本题主要考查等比数列的极限问题,解题时要熟练掌握无穷等比数列的极限和,属于基础题.13、15【解析】分析:运用等比数列的前n项和公式与数列通项公式即可得出的值.详解:数列为等比数列,故答案为15.点睛:本题考查了等比数列的通项公式与前n项和公式,考查学生对基本概念的掌握能力与计算能力.14、1【解析】
由,解得,经过验证即可得出.【详解】由,解得.经过验证可得:满足直线与直线平行,则实数.故答案为:1.【点睛】本题考查直线的平行与斜率之间的关系,考查推理能力与计算能力,属于基础题.15、【解析】
分别在和两种情况下进行讨论,当时,根据二次函数图像可得不等式组,从而求得结果.【详解】①当,即时,不等式为:,恒成立,则满足题意②当,即时,不等式恒成立则需:解得:综上所述:本题正确结果:【点睛】本题考查不等式恒成立问题的求解,易错点是忽略不等式是否为一元二次不等式,造成丢根;处理一元二次不等式恒成立问题的关键是结合二次函数图象来得到不等关系,属于常考题型.16、或【解析】
本题首先可以通过解三角形面积公式得出的值,再根据三角形内角的取值范围得出角的值。【详解】由解三角形面积公式可得:即因为,所以或【点睛】在解三角形过程中,要注意求出来的角的值可能有多种情况。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)乙机床加工的零件更符合要求.【解析】
(1)直接由平均数和方差的计算公式代入数据进行计算即可.
(2)由平均数和方差各自说明数据的特征,做出判断.【详解】(1),,,.(2)因为,,说明甲、乙机床加工的零件的直径长度的平均值相同.且甲机床加工的零件的直径长度波动比较大,
因此乙机床加工的零件更符合要求.【点睛】本题考查计算数据的平均数和方差以及根据数据的平均数和方差做出相应的判断,属于基础题.18、(1)(2)【解析】试题分析:(1)解法1:由题意利用待定系数法可得⊙C方程为.解法2:由题意结合几何关系确定圆心坐标和半径的长度可得⊙C的方程为.(2)解法1:利用圆心到直线的距离与圆的半径的关系得到关系k的不等式,求解不等式可得.解法2:联立直线与圆的方程,结合可得.试题解析:(1)解法1:设圆的方程为,则,所以⊙C方程为.解法2:由于AB的中点为,,则线段AB的垂直平分线方程为而圆心C必为直线与直线的交点,由解得,即圆心,又半径为,故⊙C的方程为.(2)解法1:因为直线与⊙C总有公共点,则圆心到直线的距离不超过圆的半径,即,将其变形得,解得.解法2:由,因为直线与⊙C总有公共点,则,解得.点睛:判断直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.19、(1)证明见解析(2)【解析】
(1)由正弦定理、余弦定理得,则角C最大,由余弦定理可得答案.
(2)由平面向量数量积的运算及三角形的面积公式结合(1)可得,利用面积公式可求解.【详解】【详解】
(1)由,根据正弦定理得,又,所以即,所以,因此边最大,即角最大.设则即,所以是锐角三角形.(2)由(1)和,即可得解得.所以在中,且所以的面积为.【点睛】本题考查正弦定理和余弦定理,数量积的定义的应用和求三角形面积.20、(1)(2)【解析】
(1)设斜率为,则直线的方程为,利用圆的弦长公式,列出方程求得的值,即可得到直线的方程;(2)当直线的斜率不存在时,根据向量的运算,求得,当直线的斜率存在时,设直线的方程为,联立方程组,利用根与系数的关系,以及向量的运算,求得,得到答案.【详解】(1)当直线的斜率不存在时,,不符合题意;当直线的斜率存在时,设斜率为,则直线的方程为,所以圆心到直线的距离,因为,所以,解得,所以直线的方程为..(2)当直线的斜率不存在时,不妨设,,,因为,,所以,,所以,,所以.当直线的斜率存在时,设斜率为,则直线的方程为:,因为直线与轴交于点,所以.直线与圆交于点,,设,,由得,,所以,;因为,,所以,,所以,,所以.综上,.【点睛】本题主要考查了直线与圆的位置关系的应用,以及向量的坐标运算,其中解答中熟记圆的弦长公式,以及联立方程组,合理利用根与系数的关系和向量的运算是解答的关键,着重考查了推理与运算能力,属于中档试题.21、(1);(2)(i)(ii)面积最大值为,直线的方程为.【解析】
(1)根据题意列出方程求解即可(2)联立直线与圆的方程,得出P、Q、H三点坐标,表示出QH直线方程,采用点到直线距离公式求解;利用圆的几何关系,表示出三角形的底和高,再结合函数最值问题进行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论