2025届内蒙古巴林右旗大板第三中学高一数学第二学期期末统考模拟试题含解析_第1页
2025届内蒙古巴林右旗大板第三中学高一数学第二学期期末统考模拟试题含解析_第2页
2025届内蒙古巴林右旗大板第三中学高一数学第二学期期末统考模拟试题含解析_第3页
2025届内蒙古巴林右旗大板第三中学高一数学第二学期期末统考模拟试题含解析_第4页
2025届内蒙古巴林右旗大板第三中学高一数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届内蒙古巴林右旗大板第三中学高一数学第二学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,,则()A. B.C. D.2.函数的图像()A.关于点对称 B.关于点对称C.关于直线对称 D.关于直线对称3.袋子中有大小、形状完全相同的四个小球,分别写有“和”、“谐”、“校”、“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率。利用电脑随机产生到之间取整数值的随机数,分别用,,,代表“和”、“谐”、“校”、“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下组随机数:由此可以估计,恰好第三次就停止摸球的概率为()A. B. C. D.4.若直线平分圆的周长,则的值为()A.-1 B.1 C.3 D.55.如图所示,4个散点图中,不适合用线性回归模型拟合其中两个变量的是()A. B.C. D.6.化为弧度是A. B. C. D.7.一空间几何体的三视图如下图所示,则该几何体的体积为()A.1 B.3 C.6 D.28.若点在圆外,则a的取值范围是()A. B. C. D.或9.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是()A.①③④ B.②④ C.②③④ D.①②③10.执行如图所示的程序框图,若输入的a,b的值分别为1,1,则输出的是()A.29 B.17 C.12 D.5二、填空题:本大题共6小题,每小题5分,共30分。11.已知等比数列、、、满足,,,则的取值范围为__________.12.计算:______.13.甲、乙两名新战土组成战术小组进行射击训练,已知单发射击时,甲战士击中靶心的概率为0.8,乙战士击中靶心的概率为0.5,两人射击的情况互不影响若两人各单发射击一次,则至少有一发击中靶心的概率是______.14.设,数列满足,,将数列的前100项从大到小排列得到数列,若,则k的值为______;15.已知等比数列的前项和为,若,且,则_____.16.在空间直角坐标系中,三棱锥的各顶点都在一个半径为的球面上,为球心,,,,,则球的体积与三棱锥的体积之比是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知A、B分别在射线CM、CN(不含端点C)上运动,∠MCN=23π(Ⅰ)若a、b、(Ⅱ)若c=3,∠ABC=θ,试用θ表示ΔABC18.甲、乙两台机床同时加工直径为10cm的零件,为了检验零件的质量,从零件中各随机抽取6件测量,测得数据如下(单位:mm):甲:99,100,98,100,100,103;乙:99,100,102,99,100,100.(1)分别计算上述两组数据的平均数和方差(2)根据(1)的计算结果,说明哪一台机床加工的零件更符合要求.19.如图,已知圆:,点.(1)求经过点且与圆相切的直线的方程;(2)过点的直线与圆相交于、两点,为线段的中点,求线段长度的取值范围.20.在公比不为1的等比数列中,,且依次成等差数列(1)求数列的通项公式;(2)令,设数列的前项和,求证:21.如图,在三棱锥中,,,,,为线段的中点,为线段上一点.(1)求证:平面平面;(2)当平面时,求三棱锥的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

分别求出的值再带入即可.【详解】因为,所以因为,所以所以【点睛】本题考查两角差的余弦公式.属于基础题.2、B【解析】

根据关于点对称,关于直线对称来解题.【详解】解:令,得,所以对称点为.当,为,故B正确;令,则对称轴为,因此直线和均不是函数的对称轴.故选:B【点睛】本题主要考查正弦函数的对称性问题.正弦函数根据关于点对称,关于直线对称.3、B【解析】

随机模拟产生了18组随机数,其中第三次就停止摸球的随机数有4个,由此可以估计,恰好第三次就停止摸球的概率.【详解】随机模拟产生了以下18组随机数:343432341342234142243331112342241244431233214344142134其中第三次就停止摸球的随机数有:142,112,241,142,共4个,由此可以估计,恰好第三次就停止摸球的概率为p.故选:B.【点睛】本题考查概率的求法,考查列举法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4、D【解析】

求出圆的圆心坐标,由直线经过圆心代入解得.【详解】解:所以的圆心为因为直线平分圆的周长所以直线过圆心,即解得,故选:D.【点睛】本题考查直线与圆的位置关系的综合应用,属于基础题.5、A【解析】

根据线性回归模型建立方法,分析选项,找出散点比较分散且无任何规律的选项可得答案.【详解】根据题意,适合用线性回归拟合其中两个变量的散点图必须散点分布比较集中,且大体接近某一条直线,分析选项可得A选项的散点图杂乱无章,最不符合条件.故选A【点睛】本题考查了统计案例散点图,属于基础题.6、D【解析】

由于,则.【详解】因为,所以,故选D.【点睛】本题考查角度制与弧度制的互化.7、D【解析】

几何体是一个四棱锥,四棱锥的底面是一个直角梯形,直角梯形的上底是1,下底是2,垂直于底边的腰是2,一条侧棱与底面垂直,这条侧棱长是2.【详解】由三视图可知,几何体是一个四棱锥,四棱锥的底面是一个直角梯形,直角梯形的上底是1,下底是2,垂直于底边的腰是2,一条侧棱与底面垂直,这条侧棱长是2.四棱锥的体积是.故选D.【点睛】本题考查由三视图求几何体的体积,由三视图求几何体的体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.8、C【解析】

先由表示圆可得,然后将点代入不等式即可解得答案【详解】由表示圆可得,即因为点在圆外所以,即综上:a的取值范围是故选:C【点睛】点与圆的位置关系(1)在圆外(2)在圆上(3)在圆内9、A【解析】

分别当截面平行于正方体的一个面时,当截面过正方体的两条相交的体对角线时,当截面既不过体对角线也不平行于任一侧面时,进行判定,即可求解.【详解】由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得②.故选A.【点睛】本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.10、B【解析】

根据程序框图依次计算得到答案.【详解】结束,输出故答案选B【点睛】本题考查了程序框图的计算,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

设等比数列、、、的公比为,由和计算出的取值范围,再由可得出的取值范围.【详解】设等比数列、、、的公比为,,,,所以,,,.所以,,故答案为:.【点睛】本题考查等比数列通项公式及其性质,解题的关键就是利用已知条件求出公比的取值范围,考查运算求解能力,属于中等题.12、【解析】

在分式的分子和分母中同时除以,然后利用常见的数列极限可计算出所求极限值.【详解】.故答案为:.【点睛】本题考查数列极限的计算,熟悉一些常见数列极限是解题的关键,考查计算能力,属于基础题.13、【解析】

利用对立事件概率计算公式和相互独立事件概率乘法公式能求出至少有一发击中靶心的概率.【详解】甲、乙两名新战土组成战术小组进行射击训练,单发射击时,甲战士击中靶心的概率为0.8,乙战士击中靶心的概率为0.5,两人射击的情况互不影响若两人各单发射击一次,则至少有一发击中靶心的概率是:.故答案为0.1.【点睛】本题考查概率的求法,考查对立事件概率计算公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于基础题.14、【解析】

根据递推公式利用数学归纳法分析出与的关系,然后考虑将的前项按要求排列,再根据项的序号计算出满足的值即可.【详解】由已知,a1=a,0<a<1;并且函数y=ax单调递减;∵∴1>a2>a1∴,∴a2>a3>a1∵,且∴a2>a4>a3>a1……当为奇数时,用数学归纳法证明,当时,成立,设时,,当时,因为,结合的单调性,所以,所以即,所以时成立,所以为奇数时,;当为偶数时,用数学归纳法证明,当时,成立,设时,,当时,因为,结合的单调性,所以,所以即,所以时成立,所以为偶数时,;用数学归纳法证明:任意偶数项大于相邻的奇数项即证:当为奇数,,当时,符合,设时,,当时,因为,结合的单调性,所以,所以,所以,所以时成立,所以当为奇数时,,据此可知:,当时,若,则有,此时无解;当时,此时的下标成首项为公差为的等差数列,通项即为,若,所以,所以.故答案为:.【点睛】本题考查数列与函数的综合应用,难度较难.(1)分析数列的单调性时,要注意到数列作为特殊的函数,其定义域为;(2)证明数列的单调性可从与的关系入手分析.15、4或1024【解析】

当时得到,当时,代入公式计算得到,得到答案.【详解】比数列的前项和为,当时:易知,代入验证,满足,故当时:故答案为:4或1024【点睛】本题考查了等比数列,忽略掉的情况是容易发生的错误.16、【解析】

首先根据坐标求出三棱锥的体积,再计算出球的体积即可.【详解】有题知建立空间直角坐标系,如图所示由图知:平面,...故答案为:【点睛】本题主要考查三棱锥的外接球,根据题意建立空间直角坐标系为解题的关键,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)c=7或c=2.(1)=2sinθ+2【解析】试题分析:(Ⅰ)由题意可得a=c-4、b=c-1.又因∠MCN=π,,可得恒等变形得c1-9c+14=0,再结合c>4,可得c的值.(Ⅱ)在△ABC中,由正弦定理可得AC=1sⅠnθ,BC=,△ABC的周长f(θ)=|AC|+|BC|+|AB|=,再由利用正弦函数的定义域和值域,求得f(θ)取得最大值.试题解析:(Ⅰ)∵a、b、c成等差,且公差为1,∴a=c-4、b=c-1.又因∠MCN=π,,可得,恒等变形得c1-9c+14=0,解得c=2,或c=1.又∵c>4,∴c=2.(Ⅱ)在△ABC中,由正弦定理可得.∴△ABC的周长f(θ)=|AC|+|BC|+|AB|=,又,当,即时,f(θ)取得最大值.考点:1.余弦定理;1.正弦定理18、(1)见解析;(2)乙机床加工的零件更符合要求.【解析】

(1)直接由平均数和方差的计算公式代入数据进行计算即可.

(2)由平均数和方差各自说明数据的特征,做出判断.【详解】(1),,,.(2)因为,,说明甲、乙机床加工的零件的直径长度的平均值相同.且甲机床加工的零件的直径长度波动比较大,

因此乙机床加工的零件更符合要求.【点睛】本题考查计算数据的平均数和方差以及根据数据的平均数和方差做出相应的判断,属于基础题.19、(1)或;(2).【解析】试题分析:(1)设直线方程点斜式,再根据圆心到直线距离等于半径求斜率;最后验证斜率不存在情况是否满足题意(2)先求点的轨迹:为圆,再根据点到圆上点距离关系确定最值试题解析:(1)当过点直线的斜率不存在时,其方程为,满足条件.当切线的斜率存在时,设:,即,圆心到切线的距离等于半径3,,解得.切线方程为,即故所求直线的方程为或.(2)由题意可得,点的轨迹是以为直径的圆,记为圆.则圆的方程为.从而,所以线段长度的最大值为,最小值为,所以线段长度的取值范围为.20、(1)(2)见证明【解析】

(1)根据已知条件得到关于的方程组,解方程组得的值,即得数列的通项公式;(2)先求出,,再利用裂项相消法求,不等式即得证.【详解】(1)设公比为,,,成等差数列,可得,即,解得(舍去),或,又,解得所以.(2)故,得【点睛】本题主要考查等比数列通项的求法,考查等差数列前n项和的求法,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平,属于基础题.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论