版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省数学高一下期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,最小正周期为的是()A. B. C. D.2.在中,,,,点P是内(包括边界)的一动点,且(),则的最大值为()A.6 B. C. D.63.下列函数中,是偶函数且在区间上是增函数的是()A. B.C. D.4.在中,角,,所对的边分别为,,,则下列命题中正确命题的个数为()①若,则;②若,则为钝角三角形;③若,则.A.1 B.2 C.3 D.05.已知,则的值为()A. B. C. D.6.已知与之间的几组数据如下表则与的线性回归方程必过()A.点 B.点C.点 D.点7.同时掷两个骰子,向上的点数之和是的概率是()A. B. C. D.8.在ΔABC中,若,则=()A.6 B.4 C.-6 D.-49.直线的倾斜角为()A. B. C. D.10.在中,角A,B,C所对的边分别为a,b,c,若,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线过点,,则直线的倾斜角为______.12.已知是等比数列,且,,那么________________.13.在ΔABC中,角A,B,C所对的对边分别为a,b,c,若A=30∘,a=7,b=214.已知数列前项和,则该数列的通项公式______.15.,则f(f(2))的值为____________.16.已知正方形,向正方形内任投一点,则的面积大于正方形面积四分之一的概率是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如下图,长方体ABCD-A1B1C1D1中,(1)当点E在AB上移动时,三棱锥D-D(2)当点E在AB上移动时,是否始终有D118.等差数列的首项为23,公差为整数,且第6项为正数,从第7项起为负数.求此数列的公差及前项和.19.已知数列的前项和为,.(1)求数列的通项公式(2)数列的前项和为,若存在,使得成立,求范围?20.某菜农有两段总长度为米的篱笆及,现打算用它们和两面成直角的墙、围成一个如图所示的四边形菜园(假设、这两面墙都足够长)已知(米),,,设,四边形的面积为.(1)将表示为的函数,并写出自变量的取值范围;(2)求出的最大值,并指出此时所对应的值.21.某电视台有一档益智答题类综艺节日,每期节目从现场编号为01~80的80名观众中随机抽取10人答题.答题选手要从“科技”和“文艺”两类题目中选一类作答,一共回答10个问题,答对1题得1分.(1)若采用随机数表法抽取答题选手,按照以下随机数表,从下方带点的数字2开始向右读,每次读取两位数,一行用完接下一行左端,求抽取的第6个观众的编号.162277943949544354821737932378873509643842634916484421753315724550688770474476721763350258392120676(2)若采用等距系统抽样法抽取答题选手,且抽取的最小编号为06,求抽取的最大编号.(3)某期节目的10名答题选手中6人选科技类题目,4人选文艺类题目.其中选择科技类的6人得分的平均数为7,方差为;选择文艺类的4人得分的平均数为8,方差为.求这期节目的10名答题选手得分的平均数和方差.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由函数的最小正周期为,逐个选项运算即可得解.【详解】解:对于选项A,的最小正周期为,对于选项B,的最小正周期为,对于选项C,的最小正周期为,对于选项D,的最小正周期为,故选D.【点睛】本题考查了三角函数的最小正周期,属基础题.2、B【解析】
利用余弦定理和勾股定理可证得;取,作,根据平面向量平行四边形法则可知点轨迹为线段,由此可确定,利用勾股定理可求得结果.【详解】由余弦定理得:如图,取,作,交于在内(包含边界)点轨迹为线段当与重合时,最大,即故选:【点睛】本题考查向量模长最值的求解问题,涉及到余弦定理解三角形的应用;解题关键是能够根据平面向量线性运算确定动点轨迹,根据轨迹确定最值点.3、A【解析】
逐一分析选项,得到答案.【详解】A.是偶函数,并且在区间时增函数,满足条件;B.不是偶函数,并且在上是减函数,不满足条件;C.是奇函数,并且在区间上时减函数,不满足条件;D.是偶函数,在区间上是减函数,不满足条件;故选A.【点睛】本题考查了函数的基本性质,属于基础题型.4、C【解析】
根据正弦定理和大角对大边判断①正确;利用余弦定理得到为钝角②正确;化简利用余弦定理得到③正确.【详解】①若,则;根据,则即,即,正确②若,则为钝角三角形;,为钝角,正确③若,则即,正确故选C【点睛】本题考查了正弦定理和余弦定理,意在考查学生对于正弦定理和余弦定理的灵活运用.5、C【解析】
根据辅助角公式即可.【详解】由辅助角公式得所以,选C.【点睛】本题主要考查了辅助角公式的应用:,属于基础题.6、C【解析】
根据线性回归方程必过样本中心点,即可得到结论.【详解】,,8根据线性回归方程必过样本中心点,可得与的线性回归方程必过.故选:C.【点睛】本题考查线性回归方程,解题的关键是利用线性回归方程必过样本中心点,属于基础题.7、C【解析】
分别计算出所有可能的结果和点数之和为的所有结果,根据古典概型概率公式求得结果.【详解】同时掷两个骰子,共有种结果其中点数之和是的共有:,共种结果点数之和是的概率为:本题正确选项:【点睛】本题考查古典概型问题中的概率的计算,关键是能够准确计算出总体基本事件个数和符合题意的基本事件个数,属于基础题.8、C【解析】
向量的点乘,【详解】,选C.【点睛】向量的点乘,需要注意后面乘的是两向量的夹角的余弦值,本题如果直接计算的话,的夹角为∠BAC的补角9、D【解析】
求出斜率,根据斜率与倾斜角关系,即可求解.【详解】化为,直线的斜率为,倾斜角为.故选:D.【点睛】本题考查直线方程一般式化为斜截式,求直线的斜率、倾斜角,属于基础题.10、B【解析】
利用正弦定理边化角,结合和差公式以及诱导公式,即可得到本题答案.【详解】因为,所以,,,,,.故选:B.【点睛】本题主要考查利用正弦定理边角转化求角,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据两点求斜率的公式求得直线的斜率,然后求得直线的倾斜角.【详解】依题意,故直线的倾斜角为.【点睛】本小题主要考查两点求直线斜率的公式,考查直线斜率和倾斜角的对应关系,属于基础题.12、【解析】
先根据等比数列性质化简方程,再根据平方性质得结果.【详解】∵是等比数列,且,,∴,即,则.【点睛】本题考查等比数列性质,考查基本求解能力.13、32或【解析】
由余弦定理求出c,再利用面积公式即可得到答案。【详解】由于在ΔABC中,A=30∘,a=7,b=23,根据余弦定理可得:a2=b所以当c=1时,ΔABC的面积S=12bcsinA=32故ΔABC的面积等于32或【点睛】本题考查余弦定理与面积公式在三角形中的应用,属于中档题。14、【解析】
由,n≥2时,两式相减,可得{an}的通项公式;【详解】∵Sn=2n2(n∈N*),∴n=1时,a1=S1=2;n≥2时,an=Sn﹣=4n﹣2,a1=2也满足上式,∴an=4n﹣2故答案为【点睛】本题考查数列的递推式,考查数列的通项,属于基础题.15、1【解析】
先求f(1),再根据f(1)值所在区间求f(f(1)).【详解】由题意,f(1)=log3(11–1)=1,故f(f(1))=f(1)=1×e1–1=1,故答案为:1.【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.16、【解析】
向正方形内任投一点,所有等可能基本事件构成正方形区域,当的面积大于正方形面积四分之一的所有基本事件构成区域矩形区域,由面积比可得概率值.【详解】如图边长为1的正方形中,分别是的中点,当点在线段上时,的面积为,所以的面积大于正方形面积四分之一,此时点应在矩形内,由几何概型得:,故填.【点睛】本题考查几何概型,利用面积比求概率值,考查对几何概型概率计算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)13【解析】(I)三棱锥D-D∵∴V(II)当点E在AB上移动时,始终有D1证明:连接AD1,∵四边形∴A1∵AE⊥平面ADD1A1,∴A1又AB∩AD1=A,AB⊂∴A1D⊥平面又D1E⊂平面∴D118、,【解析】
先设等差数列的公差为,根据第6项为正数,从第7项起为负数,得到求,再利用等差数列前项和公式求其.【详解】设等差数列的公差为,因为第6项为正数,从第7项起为负数,所以,即,所以又因为所以所以【点睛】本题主要考查了等差数列的通项公式和前n项和公式,还考查了运算求解的能力,属于中档题.19、(1);(2)【解析】
(1)根据之间关系,可得结果(2)利用错位相减法,可得,然后使用分离参数的方法,根据单调性,计算其范围,可得结果.【详解】(1)当时,两式相减得:当时,,不符合上式所以(2)令,所以所以令①②所以①-②:则化简可得故,若存在,使得成立即存在,成立故,由,则所以可知数列在单调递增所以,故【点睛】本题考查了之间关系,还考查了错位相减法求和,本题难点在于的求法,重点在于错位相减法的应用,属中档题.20、(1),其中;(2)当时,取得最大值.【解析】
(1)在中,利用正弦定理将、用表示,然后利用三角形的面积公式可求出关于的表达式,结合实际问题求出的取值范围;(2)利用(1)中的关于的表达式得出的最大值,并求出对应的的值.【详解】(1)在中,由正弦定理得,所以,,则的面积为,因此,,其中;(2)由(1)知,.,,当时,即当时,四边形的面积取得最大值.【点睛】本题考查了正弦定理、三角形的面积公式、两角和与差的正弦公式、二倍角公式以及三角函数的基本性质,在利用三角函数进行求解时,要利用三角恒等变换思想将三角函数解析式化简,考查推理能力与计算能力,属于中等题.21、(1)42;(2)78;(3)平均数为7.4,方差为2.24【解析】
(1)根据随机数表依次读取数据即可,取01~80之间的数据;(2)根据系统抽样,确定组矩,计算可得;(3)根据平均数和方差得出数据的整体关系,整体代入求解1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安徽省滁州市二中2025届物理高三第一学期期中教学质量检测模拟试题含解析
- 上海黄浦区2025届物理高二第一学期期中考试试题含解析
- 2025届四川省内江市球溪中学物理高二第一学期期末质量检测试题含解析
- 广东省揭阳市(2024年-2025年小学五年级语文)人教版期末考试((上下)学期)试卷及答案
- 《信息系统项目管理师教程》读书笔记
- 意义刺激了民族资本主义发展课件
- 2024个人动产赠与合同
- 《细胞生物学》习题及解答
- 大环内酯类抗生素课件
- 2024年油炸摊位供货合同范本
- 上海版小学英语单词表
- 2024年全国注册土木工程师(水利水电)之专业基础知识考试重点试题(详细参考解析)
- 2024中国海油应届毕业生招聘笔试历年典型考题及考点剖析附带答案详解
- 2024版借用公司名义签订合同协议
- 【超星尔雅学习通】伦理学概论(北京师范大学)网课章节答案
- 2024年国家知识产权局商标审查协作中心招聘60人【重点基础提升】模拟试题(共500题)附带答案详解
- 失智失能老年人的饮食照护(失智失能老人健康照护课件)
- 2025年中考数学专题09 逆等线最值专题(原卷版)
- 短视频服务合同范本
- 能源调度中心方案
- 2024年高考英语模拟试卷3(九省新高考卷) (二)
评论
0/150
提交评论