版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
华南师大附中2025届高一下数学期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线经过,两点,则直线的斜率为A. B. C. D.2.盒中装有除颜色以外,形状大小完全相同的3个红球、2个白球、1个黑球,从中任取2个球,则互斥而不对立的两个事件是()A.至少有一个白球;至少有一个红球 B.至少有一个白球;红、黑球各一个C.恰有一个白球:一个白球一个黑球 D.至少有一个白球;都是白球3.一个盒子内装有大小相同的红球、白球和黑球若干个,从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或红球的概率是()A.0.3 B.0.55 C.0.7 D.0.754.在中任取一实数作为x,则使得不等式成立的概率为()A. B. C. D.5.在等差数列中,,则等于()A.5 B.6 C.7 D.86.已知、的取值如下表所示:如果与呈线性相关,且线性回归方程为,则()A. B. C. D.7.如图,在正方体ABCD-A1B1C1D1中,E,F分别是C1D1,CC1的中点,则异面直线AE与BF所成角的余弦值为()A. B. C. D.8.根据如下样本数据x
3
4
5
6
7
8
y
可得到的回归方程为,则()A. B. C. D.9.某学生四次模拟考试时,其英语作文的减分情况如下表:考试次数x
1
2
3
4
所减分数y
4.5
4
3
2.5
显然所减分数y与模拟考试次数x之间有较好的线性相关关系,则其线性回归方程为()A.y=0.7x+5.25 B.y=﹣0.6x+5.25 C.y=﹣0.7x+6.25 D.y=﹣0.7x+5.2510.直线l:x+y﹣1=0与圆C:x2+y2=1交于两点A、B,则弦AB的长度为()A.2 B. C.1 D.二、填空题:本大题共6小题,每小题5分,共30分。11.设扇形的半径长为,面积为,则扇形的圆心角的弧度数是12.设,则等于________.13.函数的定义域为_______.14.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件,为了了解它们的产品质量是否存在显著差异,用分层抽样的方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=.15.设当时,函数取得最大值,则______.16.已知数列,其前项和为,若,则在,,…,中,满足的的个数为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的顶点在原点,始边与轴的非负半轴重合,终边上一点的坐标是.(1)求;(2)求;18.已知向量,(1)若,求;(2)若,求.19.已知圆,点,直线.(1)求与直线l垂直,且与圆C相切的直线方程;(2)在x轴上是否存在定点B(不同于点A),使得对于圆C上任一点P,为常数?若存在,试求这个常数值及所有满足条件的点B的坐标;若不存在,请说明理由.20.设的内角所对应的边长分别是,且.(Ⅰ)当时,求的值;(Ⅱ)当的面积为时,求的值.21.如图,在四棱锥中,平面,底面为菱形.(1)求证:平面;(2)若为的中点,,求证:平面平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由两点法求斜率的公式可直接计算斜率值.【详解】直线经过,两点,直线的斜率为.【点睛】本题考查用两点法求直线斜率,属于基础题.2、B【解析】
根据对立事件和互斥事件的定义,对每个选项进行逐一分析即可.【详解】从6个小球中任取2个小球,共有15个基本事件,因为存在事件:取出的两个球为1个白球和1个红球,故至少有一个白球;至少有一个红球,这两个事件不互斥,故A错误;因为存在事件:取出的两个球为1个白球和1个黑球,故恰有一个白球:一个白球一个黑球,这两个事件不互斥,故C错误;因为存在事件:取出的两个球都是白球,故至少有一个白球;都是白球,这两个事件不互斥,故D错误;因为至少有一个白球,包括:1个白球和1个红球,1个白球和1个黑球,2个白球这3个基本事件;红、黑球各一个只包括1个红球1个白球这1个基本事件,故两个事件互斥,因还有其它基本事件未包括,故不对立.故B正确.故选:B.【点睛】本题考查互斥事件和对立事件的辨析,属基础题.3、D【解析】
由题意可知摸出黑球的概率,再根据摸出黑球,摸出红球为互斥事件,根据互斥事件的和即可求解.【详解】因为从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,所以摸出黑球的概率是,因为从盒子中摸出1个球为黑球或红球为互斥事件,所以摸出黑球或红球的概率,故选D.【点睛】本题主要考查了两个互斥事件的和事件,其概率公式,属于中档题.4、C【解析】
先求解不等式,再利用长度型的几何概型概率公式求解即可【详解】由题,因为,解得,则,故选:C【点睛】本题考查长度型的几何概型,考查解对数不等式5、C【解析】
由数列为等差数列,当时,有,代入求解即可.【详解】解:因为数列为等差数列,又,则,又,则,故选:C.【点睛】本题考查了等差数列的性质,属基础题.6、A【解析】
计算出、,再将点的坐标代入回归直线方程,可求出的值.【详解】由表格中的数据可得,,由于回归直线过样本的中心点,则有,解得,故选:A.【点睛】本题考查回归直线方程中参数的计算,解题时要充分利用回归直线过样本的中心点这一结论,考查计算能力,属于基础题.7、D【解析】
以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,再利用向量法求出异面直线AE与BF所成角的余弦值.【详解】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,E,F分别是C1D1,CC1的中点,A(2,0,0),E(0,1,2),B(2,2,0),F(0,2,1),=(﹣2,1,2),=(﹣2,0,1),设异面直线AE与BF所成角的平面角为θ,则cosθ===,∴异面直线AE与BF所成角的余弦值为.故选D.【点睛】本题考查异面直线所成角的余弦值的求法,注意向量法的合理运用,属于基础题.8、A【解析】试题分析:依据样本数据描点连线可知图像为递减且在轴上的截距大于0,所以.考点:1.散点图;2.线性回归方程;9、D【解析】试题分析:先求样本中心点,利用线性回归方程一定过样本中心点,代入验证,可得结论.解:先求样本中心点,,由于线性回归方程一定过样本中心点,代入验证可知y=﹣0.7x+5.25,满足题意故选D.点评:本题考查线性回归方程,解题的关键是利用线性回归方程一定过样本中心点,属于基础题.10、B【解析】
利用直线和圆相交所得弦长公式,计算出弦长.【详解】圆的圆心为,半径为,圆心到直线的距离为,所以.故选:B【点睛】本小题主要考查直线和圆相交所得弦长的计算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】试题分析:设扇形圆心角的弧度数为α,则扇形面积为S=αr2=α×22=4解得:α=2考点:扇形面积公式.12、【解析】
首先根据题中求出的周期,然后利用周期性即可求出答案.【详解】由题知,有,故的周期为,故,又因为,有.故答案为:.【点睛】本题考查了三角函数的周期性,属于基础题.13、【解析】
由二次根式有意义,得:,然后利用指数函数的单调性即可得到结果.【详解】由二次根式有意义,得:,即,因为在R上是增函数,所以,x≤2,即定义域为:【点睛】本题主要考查函数定义域的求法以及指数不等式的解法,要求熟练掌握常见函数成立的条件,比较基础.14、13【解析】(解法1)由分层抽样得,解得n=13.(解法2)从甲乙丙三个车间依次抽取a,b,c个样本,则120∶80∶60=a∶b∶3a=6,b=4,所以n=a+b+c=13.15、;【解析】f(x)=sinx-2cosx==sin(x-φ),其中sinφ=,cosφ=,当x-φ=2kπ+(k∈Z)时,函数f(x)取得最大值,即θ=2kπ++φ时,函数f(x)取到最大值,所以cosθ=-sinφ=-.16、1【解析】
运用周期公式,求得,运用诱导公式及三角恒等变换,化简可得,即可得到满足条件的的值.【详解】解:,可得周期,,则满足的的个数为.故答案为:1.【点睛】本题考查三角函数的周期性及应用,考查三角函数的化简和求值,以及运算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】
(1)求得点到原点的距离,根据三角函数的定义求值;(2)同(1)可求出,然后用诱导公式化简,再代入值计算.【详解】(1)(2),为第四象限,【点睛】本题考查三角函数的定义,考查诱导公式,属于基础题.18、(1)3;(2)或【解析】
(1)由,得,又由,即可得到本题答案;(2)由,得,即,由此即可得到本题答案.【详解】解:(1)由,得,即,(2)由,得,即,又,解得或.【点睛】本题主要考查平面向量与三角函数求值的综合问题,齐次式法求值是解决此类问题的常用方法.19、(1)或(2)存在,,【解析】
(1)先设与直线l垂直的直线方程为,再结合点到直线的距离公式求解即可;(2)先设存在,利用都有为常数及在圆上,列出等式,然后利用恒成立求解即可.【详解】解:(1)由直线.则可设与直线l垂直的直线方程为,又该直线与圆相切,则,则,故所求直线方程为或;(2)假设存在定点使得对于圆C上任一点P,为常数,则,所以,将代入上式化简整理得:对恒成立,所以,解得或,又,即,所以存在定点使得对于圆C上任一点P,为常数.【点睛】本题考查了点到直线的距离公式,重点考查了点与圆的位置关系,属中档题.20、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由得,再利用正弦定理即可求出(Ⅱ)由可得,再利用余弦定理即可求出.【详解】(Ⅰ)∵∴,由正弦定理可知:,∴(Ⅱ)∵∴由余弦定理得:∴,即则:故:【点睛】本题主要考查了正弦定理与余弦定理的应用,考查了推理能力与计算能力,属于中档题.21、(1)证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国汽车雷达行业投资分析、市场运行态势、未来前景预测报告
- 装修食堂合同范本
- 2023年伊春嘉荫县招聘公益性岗位考试真题
- 广州危化品货运合同范本
- 联通服务合同范本
- 防洪度汛应急抢险
- 2023年河北唐山永平高中招聘储备教师考试真题
- 医院年终总结
- 2023年北京市木樨园体育运动技术学校(北京市排球运动管理中心)招聘笔试真题
- 联想售后合同范本
- 中医基本技能操作针刺法
- 保温砂浆施工规程
- 夏商周考古课件 第3章 二里冈文化(4-6节)
- GB/T 29790-2020即时检验质量和能力的要求
- GB 40165-2021固定式电子设备用锂离子电池和电池组安全技术规范
- 音标3元音字母e发音用上课
- 深圳市失业人员停止领取失业保险待遇申请表空表
- 第十三章医疗服务管理课件
- 工程质保期满验收报告模板
- 《中国当代文艺思潮》导论文艺思潮的基本概念
- 高考地理复习:过程类推理综合题解析-以地貌景观题为例
评论
0/150
提交评论