2025届山东省微山县第一中学高一数学第二学期期末学业质量监测模拟试题含解析_第1页
2025届山东省微山县第一中学高一数学第二学期期末学业质量监测模拟试题含解析_第2页
2025届山东省微山县第一中学高一数学第二学期期末学业质量监测模拟试题含解析_第3页
2025届山东省微山县第一中学高一数学第二学期期末学业质量监测模拟试题含解析_第4页
2025届山东省微山县第一中学高一数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东省微山县第一中学高一数学第二学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了得到函数的图象,只需把函数的图象上所有的点A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度2.设为数列的前项和,,则的值为()A. B. C. D.不确定3.已知正四棱锥的底面边长为2,侧棱长为,则该正四棱锥的体积为()A. B. C. D.4.直线x+2y﹣3=0与直线2x+ay﹣1=0垂直,则a的值为()A.﹣1 B.4 C.1 D.﹣45.已知角的终边经过点(3,-4),则的值为()A. B. C. D.6.如图,在矩形中,,,点为的中点,点在边上,点在边上,且,则的最大值是()A. B. C. D.7.若直线与曲线有公共点,则的取值范围是()A. B.C. D.8.已知等差数列前n项的和为,,,则()A.25 B.26 C.27 D.289.若正实数x,y满足不等式,则的取值范围是()A. B. C. D.10.已知等差数列中,则()A.10 B.16 C.20 D.24二、填空题:本大题共6小题,每小题5分,共30分。11.利用直线与圆的有关知识求函数的最小值为_______.12.在等比数列{an}中,a113.已知当时,函数(且)取得最小值,则时,的值为__________.14.函数的反函数为____________.15.已知正四棱锥的底面边长为,高为,则该四棱锥的侧面积是______________16.已知数列的通项公式,则____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求函数的最小正周期和对称轴方程;(2)若,求的值域.18.在中,内角,,所对的边分别为,,.已知.(Ⅰ)求;(Ⅱ)若,,求的值.19.如图,甲、乙两个企业的用电负荷量关于投产持续时间(单位:小时)的关系均近似地满足函数.(1)根据图象,求函数的解析式;(2)为使任意时刻两企业用电负荷量之和不超过9,现采用错峰用电的方式,让企业乙比企业甲推迟小时投产,求的最小值.20.已知的内角A,B,C所对的边分别为a,b,c,其外接圆的面积为,且.(1)求边长c;(2)若的面积为,求的周长.21.设等差数列中,.(1)求数列的通项公式;(2)若等比数列满足,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】试题分析:由题意,为得到函数的图象,只需把函数的图象上所有的点向右平行移动个单位长度,故选D.【考点】三角函数图象的平移【名师点睛】本题考查三角函数图象的平移,在函数的图象平移变换中要注意“”的影响,变换有两种顺序:一种的图象向左平移个单位得的图象,再把横坐标变为原来的倍,纵坐标不变,得的图象,另一种是把的图象横坐标变为原来的倍,纵坐标不变,得的图象,再向左平移个单位得的图象.2、C【解析】

令,由求出的值,再令时,由得出,两式相减可推出数列是等比数列,求出该数列的公比,再利用等比数列求和公式可求出的值.【详解】当时,,得;当时,由得出,两式相减得,可得.所以,数列是以为首项,以为公比的等比数列,因此,.故选:C.【点睛】本题考查利用前项和求数列通项,同时也考查了等比数列求和,在递推公式中涉及与时,可利用公式求解出,也可以转化为来求解,考查推理能力与计算能力,属于中等题.3、D【解析】

求出正四棱锥的高后可求其体积.【详解】正四棱锥底面的对角线的长度为,故正四棱锥的高为,所以体积为,故选D.【点睛】正棱锥中,棱锥的高、斜高、侧棱和底面外接圆的半径可构成四个直角三角形,它们沟通了棱锥各个几何量之间的关系,解题中注意利用它们实现不同几何量之间的联系.4、A【解析】

由两直线垂直的条件,列出方程即可求解,得到答案.【详解】由题意,直线与直线垂直,则满足,解得,故选:A.【点睛】本题主要考查了两直线位置关系的应用,其中解答中熟记两直线垂直的条件是解答的关键,着重考查了推理与运算能力,属于基础题.5、A【解析】

先求出的值,即得解.【详解】由题得,,所以.故选A【点睛】本题主要考查三角函数的坐标定义,意在考查学生对该知识的理解掌握水平,属于基础题.6、A【解析】

把线段最值问题转化为函数问题,建立函数表达式,从而求得最值.【详解】设,,,,,,,,,,的最大值是.故选A.【点睛】本题主要考查函数的实际应用,建立合适的函数关系式是解决此题的关键,意在考查学生的分析能力及数学建模能力.7、D【解析】

将本题转化为直线与半圆的交点问题,数形结合,求出的取值范围【详解】将曲线的方程化简为即表示以为圆心,以2为半径的一个半圆,如图所示:由圆心到直线的距离等于半径2,可得:解得或结合图象可得故选D【点睛】本题主要考查了直线与圆的位置关系,考查了转化能力,在解题时运用点到直线的距离公式来计算,数形结合求出结果,本题属于中档题8、C【解析】

根据等差数列的求和与通项性质求解即可.【详解】等差数列前n项的和为,故.故.故选:C【点睛】本题主要考查了等差数列通项与求和的性质运用,属于基础题.9、B【解析】

试题分析:由正实数满足不等式,得到如下图阴影所示的区域:当过点时,,当过点时,,所以的取值范围是.考点:线性规划问题.10、C【解析】

根据等差数列性质得到,再计算得到答案.【详解】已知等差数列中,故答案选C【点睛】本题考查了等差数列的性质,是数列的常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

令得,转化为z==,再利用圆心到直线距离求最值即可【详解】令,则故转化为z==,表示上半个圆上的点到直线的距离的最小值的5倍,即故答案为3【点睛】本题考查直线与圆的位置关系,点到直线的距离公式,考查数形结合思想,是中档题12、64【解析】由题设可得q3=8⇒q=3,则a713、3【解析】

先根据计算,化简函数,再根据当时,函数取得最小值,代入计算得到答案.【详解】或当时,函数取得最小值:或(舍去)故答案为3【点睛】本题考查了三角函数的化简,辅助角公式,函数的最值,综合性较强,意在考查学生的综合应用能力和计算能力.14、【解析】

首先求出在区间的值域,再由表示的含义,得到所求函数的反函数.【详解】因为,所以,.所以的反函数是.故答案为:【点睛】本题主要考查反函数定义,同时考查了三角函数的值域问题,属于简单题.15、【解析】四棱锥的侧面积是16、【解析】

将代入即可求解【详解】令,可得.故答案为:【点睛】本题考查求数列的项,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)对称轴为,最小正周期;(2)【解析】

(1)利用正余弦的二倍角公式和辅助角公式将函数解析式进行化简得到,由周期公式和对称轴公式可得答案;(2)由x的范围得到,由正弦函数的性质即可得到值域.【详解】(1)令,则的对称轴为,最小正周期;(2)当时,,因为在单调递增,在单调递减,在取最大值,在取最小值,所以,所以.【点睛】本题考查正弦函数图像的性质,考查周期性,对称性,函数值域的求法,考查二倍角公式以及辅助角公式的应用,属于基础题.18、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)根据正弦定理将边角转化,结合三角函数性质即可求得角.(Ⅱ)先根据余弦定理求得,再由正弦定理求得,利用同角三角函数关系式求得,即可求得.即可求得的值.【详解】(Ⅰ)在中,由正弦定理可得即因为,所以,即又因为,可得(Ⅱ)在中,由余弦定理及,,有,故由正弦定理可得因为,故因此,所以,【点睛】本题考查了正弦定理与余弦定理在解三角形中的应用,二倍角公式及正弦和角公式的用法,属于基础题.19、(1);(2)4【解析】

(1)由,得,由,得A,b,代入,求得,从而即可得到本题答案;(2)由题,得恒成立,等价于恒成立,然后利用和差公式展开,结合辅助角公式,逐步转化,即可得到本题答案.【详解】(1)解:由图知,又,可得,代入,得,又,所求为(2)设乙投产持续时间为小时,则甲的投产持续时间为小时,由诱导公式,企业乙用电负荷量随持续时间变化的关系式为:同理,企业甲用电负荷量变化关系式为:两企业用电负荷量之和,依题意,有恒成立即恒成立展开有恒成立其中,,,整理得:解得即取得:的最小值为4.【点睛】本题主要考查根据三角函数的图象求出其解析式,以及三角函数的实际应用,主要考查学生的分析问题和解决问题的能力,以及计算能力,难度较大.20、(1)(2)【解析】

(1)计算得到,,利用正弦定理计算得到答案.(2)根据余弦定理得到,根据面积公式得到,得到答案.【详解】(1),.,.,,.(2)由余弦定理得:.,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论