2025届安徽省屯溪第一中学数学高一下期末检测模拟试题含解析_第1页
2025届安徽省屯溪第一中学数学高一下期末检测模拟试题含解析_第2页
2025届安徽省屯溪第一中学数学高一下期末检测模拟试题含解析_第3页
2025届安徽省屯溪第一中学数学高一下期末检测模拟试题含解析_第4页
2025届安徽省屯溪第一中学数学高一下期末检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省屯溪第一中学数学高一下期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.连续两次抛掷一枚质地均匀的硬币,出现正面向上与反面向上各一次的概率是(

)A. B. C. D.2.函数(其中)的图象如图所示,为了得到的图象,则只要将的图象()A.向右平移 B.向右平移C.向左平移 D.向左平移3.设a,b,c表示三条不同的直线,M表示平面,给出下列四个命题:其中正确命题的个数有()①若a//M,b//M,则a//b;②若b⊂M,a//b,则a//M;③若a⊥c,b⊥c,则a//b;④若a//c,b//c,则a//b.A.0个 B.1个 C.2个 D.3个4.已知网格纸的各个小格均是边长为一个单位的正方形,一个几何体的三视图如图中粗线所示,则该几何体的表面积为()A. B. C. D.5.在数列中,,且数列是等比数列,其公比,则数列的最大项等于()A. B. C.或 D.6.已知三棱锥O-ABC,侧棱OA,OB,OC两两垂直,且OA=OB=OC=2,则以O为球心且1为半径的球与三棱锥O-ABC重叠部分的体积是()A.π8 B.π6 C.π7.若,是不同的直线,,是不同的平面,则下列命题中正确的是()A.若,,,则 B.若,,,则C.若,,,则 D.若,,,则8.已知数列的前项和为,,且满足,若,则的值为()A. B. C. D.9.曲线与过原点的直线没有交点,则的倾斜角的取值范围是()A. B. C. D.10.已知,集合,则A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若直线与圆有公共点,则实数的取值范围是__________.12.四棱柱中,平面ABCD,平面ABCD是菱形,,,,E是BC的中点,则点C到平面的距离等于________.13.已知满足约束条件,则的最大值为__________.14.若数列的前项和,满足,则______.15.如图,在正方体中,点是棱上的一个动点,平面交棱于点.下列命题正确的为_______________.①存在点,使得//平面;②对于任意的点,平面平面;③存在点,使得平面;④对于任意的点,四棱锥的体积均不变.16.函数的最小正周期为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角A,B,C的对边分别为a,b,c,已知.(1)求角B的大小;(2)若,,求的面积.18.已知,为第二象限角.(1)求的值;(2)求的值.19.已知集合,数列是公比为的等比数列,且等比数列的前三项满足.(1)求通项公式;(2)若是等比数列的前项和,记,试用等比数列求和公式化简(用含的式子表示)20.已知(Ⅰ)求的值;(Ⅱ)若,求的值.21.已知向量,,且.(1)求向量在上的投影;(2)求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

利用列举法求得基本事件的总数,利用古典概型的概率计算公式,即可求解.【详解】由题意,连续两次抛掷一枚质地均匀的硬币,基本事件包含:(正面,正面),(正面,反面),(反面,正面),(反面,反面),共有4中情况,出现正面向上与反面向上各一次,包含基本事件:(正面,反面),(反面,正面),共2种,所以的概率为,故选C.【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中熟练利用列举法求得基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.2、A【解析】

利用函数的图像可得,从而可求出,再利用特殊点求出,进而求出三角函数的解析式,再利用三角函数图像的变换即可求解.【详解】由图可知,所以,当时,,由于,解得:,所以,要得到的图像,则需要将的图像向右平移.故选:A【点睛】本题考查了由图像求解析式以及三角函数的图像变换,需掌握三角函数图像变换的原则,属于基础题.3、B【解析】

由空间直线的位置关系及空间直线与平面的位置关系逐一判断即可得解.【详解】解:对于①,若a//M,b//M,则a//b或与相交或与异面,即①错误;对于②,若b⊂M,a//b,则a//M或a⊂M,即②错误;对于③,若a⊥c,b⊥c,则a//b或与相交或与异面,即③错误;对于④,若a//c,b//c,由空间直线平行的传递性可得a//b,即④正确,即正确命题的个数有1个,故选:B.【点睛】本题考查了空间直线的位置关系,重点考查了空间直线与平面的位置关系,属基础题.4、B【解析】

根据三视图还原几何体即可.【详解】由三视图可知,该几何体为一个圆柱内切了一个圆锥,圆锥侧面积为,圆柱上底面积为,圆柱侧面积为,.所以选择B【点睛】本题主要考查了三视图,根据三视图还原几何体常用的方法有:在正方体或者长方体中切割.属于中等题.5、C【解析】

在数列中,,,且数列是等比数列,其公比,利用等比数列的通项公式可得:.可得,利用二次函数的单调性即可得出.【详解】在数列中,,,且数列是等比数列,其公比,.,.由或8时,,或9时,,数列的最大项等于或.故选:C.【点睛】本题考查等比数列的通项公式、累乘法、二次函数的单调性,考查推理能力与计算能力,属于中档题.6、B【解析】

根据三棱锥三条侧棱的关系,得到球与三棱锥的重叠部分为球的18【详解】∵三棱锥O-ABC,侧棱OA,OB,OC两两互相垂直,且OA=OB=OC=2,以O为球心且1为半径的球与三棱锥O-ABC重叠部分的为球的18即对应的体积为18【点睛】本题主要考查球体体积公式的应用,解题的关键就是利用三棱锥与球的关系,考查空间想象能力,属于中等题。7、C【解析】

A中平面,可能垂直也可能平行或斜交,B中平面,可能平行也可能相交,C中成立,D中平面,可能平行也可能相交.【详解】A中若,,,平面,可能垂直也可能平行或斜交;B中若,,,平面,可能平行也可能相交;同理C中若,,则,分别是平面,的法线,必有;D中若,,,平面,可能平行也可能相交.故选C项.【点睛】本题考查空间中直线与平面,平面与平面的位置关系,属于简单题.8、D【解析】

由递推关系可证得数列为等差数列,利用等差数列通项公式求得公差;利用等差数列通项公式和前项和公式分别求得和,代入求得结果.【详解】由得:数列为等差数列,设其公差为,,解得:,本题正确选项:【点睛】本题考查等差数列基本量的计算,涉及到利用递推关系式证明数列为等差数列、等差数列通项公式和前项和公式的应用.9、A【解析】

作出曲线的图形,得出各射线所在直线的倾斜角,观察直线在绕着原点旋转时,直线与曲线没有交点时,直线的倾斜角的变化,由此得出的取值范围.【详解】当,时,由得,该射线所在直线的倾斜角为;当,时,由得,该射线所在直线的倾斜角为;当,时,由得,该射线所在直线的倾斜角为;当,时,由得,该射线所在直线的倾斜角为.作出曲线的图象如下图所示:由图象可知,要使得过原点的直线与曲线没有交点,则直线的倾斜角的取值范围是,故选:A.【点睛】本题考查直线倾斜角的取值范围,考查数形结合思想,解题的关键就是作出图形,利用数形结合思想进行求解,属于中等题.10、D【解析】

先求出集合A,由此能求出∁UA.【详解】∵U=R,集合A={x|1﹣2x>0}={x|x},∴∁UA={x|x}.故选:D.【点睛】本题考查补集的求法,考查补集定义、不等式性质等基础知识,考查运算求解能力,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

直线与圆有交点,则圆心到直线的距离小于或等于半径.【详解】直线即,圆的圆心为,半径为,若直线与圆有交点,则,解得,故实数的取值范围是.【点睛】本题考查直线与圆的位置关系,点到直线距离公式是常用方法.12、【解析】

利用等体法即可求解.【详解】如图,由ABCD是菱形,,,E是BC的中点,所以,又平面ABCD,所以平面ABCD,即,又,则平面,由平面,所以,所以,设点C到平面的距离为,由即,即,所以.故答案为:【点睛】本题考查了等体法求点到面的距离,同时考查了线面垂直的判定定理,属于基础题.13、57【解析】

作出不等式组所表示的可行域,平移直线,观察直线在轴的截距取最大值时的最优解,再将最优解代入目标函数可得出目标函数的最大值.【详解】作出不等式组所表示的可行域如下图所示:平移直线,当直线经过可行域的顶点时,该直线在轴上的截距取最大值,此时,取最大值,即,故答案为.【点睛】本题考查简单的线性规划问题,考查线性目标函数的最值问题,一般利用平移直线结合在坐标轴上的截距取最值时,找最优解求解,考查数形结合数学思想,属于中等题.14、【解析】

令,得出,令,由可计算出在时的表达式,然后就是否符合进行检验,由此可得出.【详解】当时,;当时,则.也适合.综上所述,.故答案为:.【点睛】本题考查利用求,一般利用来计算,但需要对进行检验,考查计算能力,属于基础题.15、①②④【解析】

根据线面平行和线面垂直的判定定理,以及面面垂直的判定定理和性质分别进行判断即可.【详解】①当为棱上的一中点时,此时也为棱上的一个中点,此时//,满足//平面,故①正确;②连结,则平面,因为平面,所以平面平面,故②正确;③平面,不可能存在点,使得平面,故③错误;④四棱锥的体积等于,设正方体的棱长为1.∵无论、在何点,三角形的面积为为定值,三棱锥的高,保持不变,三角形的面积为为定值,三棱锥的高为,保持不变.∴四棱锥的体积为定值,故④正确.故答案为①②④.【点睛】本题主要考查空间直线和平面平行或垂直的位置关系的判断,解答本题的关键正确利用分割法求空间几何体的体积的方法,综合性较强,难度较大.16、【解析】试题分析:,所以函数的周期等于考点:1.二倍角降幂公式;2.三角函数的周期.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)先利用正弦定理将已知等式化为,化简后再运用余弦定理可得角B;(2)由和余弦定理可得,面积为,将和的值代入面积公式即可.【详解】解:(1)由题,由正弦定理得:,即则所以.(2)因为,所以,解得所以【点睛】本题考查解三角形,是常考题型.18、(1);(2)【解析】

(1)根据同角三角函数平方关系即可求得结果;(2)利用同角三角函数商数关系可求得,代入两角和差正切公式可求得结果.【详解】(1)为第二象限角(2)由(1)知:【点睛】本题考查同角三角函数值的求解、两角和差正切公式的应用;易错点是忽略角所处的范围,造成三角函数值符号求解错误.19、(1)(2)【解析】

(1)观察式子特点可知,只有2,4,8三项符合等比数列特征,再根据题设条件求解即可;(2)根据等比数列通项公式表示出,再采用分组求和法化简的表达式即可【详解】(1)由题可知,只有2,4,8三项符合等比数列特征,又,故,故,;(2),,所以【点睛】本题考查等比数列通项公式的求法,等比数列前项和公式的用法,分组求和法的应用,属于中档题20、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)利用两角和与差的正弦公式将已知两式展开,分别作和、作差可得,,再利用,即可求出结果;(Ⅱ)由已知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论