2025届吉林省白城市洮南第十中学高一下数学期末经典模拟试题含解析_第1页
2025届吉林省白城市洮南第十中学高一下数学期末经典模拟试题含解析_第2页
2025届吉林省白城市洮南第十中学高一下数学期末经典模拟试题含解析_第3页
2025届吉林省白城市洮南第十中学高一下数学期末经典模拟试题含解析_第4页
2025届吉林省白城市洮南第十中学高一下数学期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届吉林省白城市洮南第十中学高一下数学期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.执行如图所示的程序语句,输出的结果为()A. B.C. D.2.在△ABC中,sinA:sinB:sinC=4:3:2,则cosA的值是()A. B. C. D.3.设点M是直线上的一个动点,M的横坐标为,若在圆上存在点N,使得,则的取值范围是()A. B. C. D.4.已知平面四边形满足,,,则的长为()A.2 B. C. D.5.已知m,n是两条不同的直线,是三个不同的平面,则下列命题正确的是()A.若,,则 B.若,则C.若,,,则 D.若,,则6.已知平面向量的夹角为,且,则()A. B. C. D.7.已知,是两条不同的直线,,是两个不同的平面,给出下列四个结论:①,,,则;②若,,,则;③若,,,则;④若,,,则.其中正确结论的序号是A.①③ B.②③ C.①④ D.②④8.已知,满足,则()A. B. C. D.9.集合,则()A. B. C. D.10.已知数列的通项公式,前n项和为,若,则的最大值是()A.5 B.10 C.15 D.20二、填空题:本大题共6小题,每小题5分,共30分。11.设,,,,,为坐标原点,若、、三点共线,则的最小值是_______.12.在等比数列中,,,则__________.13.已知点,点,则________.14.如图所示,在正三棱柱中,是的中点,,则异面直线与所成的角为____.15.已知正方体的棱长为1,则三棱锥的体积为______.16.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角所对的边是,若向量与共线.(1)求角的大小;(2)若,求周长的取值范围.18.设向量,,令函数,若函数的部分图象如图所示,且点的坐标为.(1)求点的坐标;(2)求函数的单调增区间及对称轴方程;(3)若把方程的正实根从小到大依次排列为,求的值.19.在锐角中角,,的对边分别是,,,且.(1)求角的大小;(2)若,求面积的最大值.20.如图,在中,,D为延长线上一点,且,,.(1)求的长度;(2)求的面积.21.如图,已知四棱锥的侧棱底面,且底面是直角梯形,,,,,,点在棱上,且.(1)证明:平面;(2)求三棱锥的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

通过解读算法框图功能发现是为了求数列的和,采用裂项相消法即可得到答案.【详解】由已知中的程序语句可知:该程序的功能是求的值,输出的结果为,故选B.【点睛】本题主要考查算法框图基本功能,裂项相消法求和,意在考查学生的分析能力和计算能力.2、A【解析】

由正弦定理可得,再结合余弦定理求解即可.【详解】解:因为在△ABC中,sinA:sinB:sinC=4:3:2,由正弦定理可得,不妨令,由余弦定理可得,故选:A.【点睛】本题考查了正弦定理及余弦定理,重点考查了运算能力,属基础题.3、D【解析】

由题意画出图形,根据直线与圆的位置关系可得相切,设切点为P,数形结合找出M点满足|MP|≤|OP|的范围,从而得到答案.【详解】由题意可知直线与圆相切,如图,设直线x+y−2=0与圆相切于点P,要使在圆上存在点N,使得,使得最大值大于或等于时一定存在点N,使得,而当MN与圆相切时,此时|MP|取得最大值,则有|MP|≤|OP|才能满足题意,图中只有在M1、M2之间才可满足,∴的取值范围是[0,2].故选:D.【点睛】本题考查直线与圆的位置关系,根据数形结合思想,画图进行分析可得,属于中等题.4、B【解析】

先建系,再结合两点的距离公式、向量的数量积及模的运算,求解即可得解.【详解】解:建立如图所示的平面直角坐标系,则,设,由,则,所以,又,所以,,即,故选:B.【点睛】本题考查了两点的距离公式,重点考查了向量的数量积运算及模的运算,属中档题.5、C【解析】

利用线面垂直、线面平行、面面垂直的性质定理分别对选项分析选择.【详解】对于A,若,,则或者;故A错误;对于B,若,则可能在内或者平行于;故B错误;对于C,若,,,过分作平面于,作平面,则根据线面平行的性质定理得,,∴,根据线面平行的判定定理,可得,又,,根据线面平行的性质定理可得,又,∴;故C正确;对于D.若,,则与可能垂直,如墙角;故D错误;故选:C.【点睛】本题考查了面面垂直、线面平行、线面垂直的性质定理及应用,涉及空间线线平行的传递性,考查了空间想象能力,熟练运用定理是关键.6、B【解析】

将模平方后利用数量积的定义计算其结果,然后开根号得出的值.【详解】,因此,,故选B.【点睛】本题考查利用平面向量的数量积来求平面向量的模,通常利用平方法结合平面向量数量积的定义来进行求解,考查计算能力,属于中等题.7、C【解析】

利用面面垂直的判定定理判断①;根据面面平行的判定定理判断②;利用线面垂直和线面平行的性质判断③;利用线面垂直和面面平行的性质判断④【详解】①,,或,又,则成立,故正确②若,,或和相交,并不一定平行于,故错误③若,,则或,若,则并不一定平行于,故错误④若,,,又,成立,故正确综上所述,正确的命题的序号是①④故选【点睛】本题主要考查了命题的真假判断和应用,解题的关键是理解线面,面面平行与垂直的判断定理和性质定理,属于基础题.8、A【解析】

根据对数的化简公式得到,由指数的运算公式得到=,由对数的性质得到>0,,进而得到结果.【详解】已知,=,>0,进而得到.故答案为A.【点睛】本题考查了指对函数的运算公式和对数函数的性质;比较大小常用的方法有:两式做差和0比较,分式注意同分,进行因式分解为两式相乘的形式;或者利用不等式求得最值,判断最值和0的关系.9、C【解析】

先求解不等式化简集合A和B,再根据集合的交集运算求得结果即可.【详解】因为集合,集合或,所以.故本题正确答案为C.【点睛】本题考查一元二次不等式,分式不等式的解法和集合的交集运算,注意认真计算,仔细检查,属基础题.10、B【解析】

将的通项公式分解因式,判断正负分界处,进而推断的最大最小值得到答案.【详解】数列的通项公式当时,当或是最大值为或最小值为或的最大值为故答案为B【点睛】本题考查了前n项和为的最值问题,将其转化为通项公式的正负问题是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据三点共线求得的的关系式,利用基本不等式求得所求表达式的最小值.【详解】依题意,由于三点共线,所以,化简得,故,当且仅当,即时,取得最小值【点睛】本小题主要考查三点共线的向量表示,考查利用基本不等式求最小值,属于基础题.12、8【解析】

可先计算出公比,从而利用求得结果.【详解】因为,所以,所以,则.【点睛】本题主要考查等比数列基本量的相关计算,难度很小.13、【解析】

直接利用两点间的距离公式求解即可.【详解】点A(2,1),B(5,﹣1),则|AB|.故答案为:.【点睛】本题考查两点间的距离公式的应用,基本知识的考查.14、【解析】

要求两条异面直线所成的角,需要通过见中点找中点的方法,找出边的中点,连接出中位线,得到平行,从而得到两条异面直线所成的角,得到角以后,再在三角形中求出角.【详解】取的中点E,连AE,,易证,∴为异面直线与所成角,设等边三角形边长为,易算得∴在∴故答案为【点睛】本题考查异面直线所成的角,本题是一个典型的异面直线所成的角的问题,解答时也是应用典型的见中点找中点的方法,注意求角的三个环节,一画,二证,三求.15、.【解析】

根据题意画出正方体,由线段关系即可求得三棱锥的体积.【详解】根据题意,画出正方体如下图所示:由棱锥的体积公式可知故答案为:【点睛】本题考查了三棱锥体积求法,通过转换顶点法求棱锥的体积是常用方法,属于基础题.16、.【解析】分析:由题意结合古典概型计算公式即可求得题中的概率值.详解:由题意可知了,比赛可能的方法有种,其中田忌可获胜的比赛方法有三种:田忌的中等马对齐王的下等马,田忌的上等马对齐王的下等马,田忌的上等马对齐王的中等马,结合古典概型公式可得,田忌的马获胜的概率为.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)由题可得,利用正弦定理边化角以及两角和的正弦公式整理可得,进而得到答案.(2)由正弦定理得,,所以周长,化简整理得,再根据角的范围求得答案.【详解】解:(1)由与共线,得,由正弦定理得:,所以又,所以因为,解得.(2)由正弦定理得:,则,,所以周长因为,,所以,故【点睛】本题考查的知识点有正弦定理边化角以及两角和差的正弦公式,三角函数的性质,属于一般题.18、(1)(2)单调递增区间为;对称轴方程为,;(3)14800【解析】

(1)先求出,令求出点B的坐标;(2)利用复合函数的单调性原理求函数的单调增区间,利用三角函数的图像和性质求对称轴方程;(3)由(2)知对称轴方程为,,所以,,…,,即得解.【详解】解:(1)由已知,得∴令,得,,∴,.当时,,∴得坐标为(2)单调递增区间,得,∴单调递增区间为对称轴,得,∴对称轴方程为,(3)由,得,根据正弦函数图象的对称性,且由(2)知对称轴方程为,∴,,…,∴【点睛】本题主要考查三角恒等变换和三角函数的图像和性质,考查等差数列求和,意在考查学生对这些知识的理解掌握水平,属于中档题.19、(1)(2)【解析】

(1)由正弦定理可得,结合,可求出与;(2)由余弦定理可得,结合基本不等式可得,即可求出,从而可求出的最大值.【详解】解:(1)因为,所以,又,所以,又是锐角三角形,则.(2)因为,,,所以,所以,即(当且仅当时取等号),故.【点睛】本题考查了正弦定理、余弦定理在解三角形中的运用,考查了利用基本不等式求最值,考查了学生的计算能力,属于中档题.20、(1)(2)【解析】

(1)求得,在中运用余弦定理可得所求值;(2)在中,求得,,,再由三角形的面积公式,可得所求值.【详解】(1)由题意可得,在中,由余弦定理可得,则;(2)在中,,,,的面积为.【点睛】本题考查三角形的余弦定理和正弦定理、面积公式的运用,考查方程思想和运算能力.21、(1)见证明;(2)4【解析】

(1)取的三等分点,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论