广东省汕头市潮南实验学校校2025届数学高一下期末联考模拟试题含解析_第1页
广东省汕头市潮南实验学校校2025届数学高一下期末联考模拟试题含解析_第2页
广东省汕头市潮南实验学校校2025届数学高一下期末联考模拟试题含解析_第3页
广东省汕头市潮南实验学校校2025届数学高一下期末联考模拟试题含解析_第4页
广东省汕头市潮南实验学校校2025届数学高一下期末联考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省汕头市潮南实验学校校2025届数学高一下期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,已知、、分别是角、、的对边,若,则的形状为A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形2.已知一组正数的平均数为,方差为,则的平均数与方差分别为()A. B. C. D.3.已知非零向量满足,且,则与的夹角为A. B. C. D.4.若直线kx+(1-k)y-3=0和直线(k-1)x+(2k+3)y-2=0互相垂直,则k=()A.-3或-1 B.3或1 C.-3或1 D.-1或35.在中,角,,所对的边分别为,,,若,,则等于()A.1 B.2 C. D.46.已知实数满足,则的最大值为()A.8 B.2 C.4 D.67.在区间上随机取一个数x,的值介于0到之间的概率为()A. B. C. D.8.在等比数列中,,,则()A.140 B.120 C.100 D.809.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如.现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于().A. B. C. D.10.已知奇函数满足,则的取值不可能是()A.2 B.4 C.6 D.10二、填空题:本大题共6小题,每小题5分,共30分。11.等比数列的前项和为,若,,成等差数列,则其公比为_________.12.设a>1,b>1.若关于x,y的方程组无解,则的取值范围是.13.已知向量a=(2,-4),b=(-3,-4),则向量a与14.方程的解集是______.15.已知,,则________16.设等比数列的公比,前项和为,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前项和,函数对任意的都有,数列满足.(1)求数列,的通项公式;(2)若数列满足,是数列的前项和,是否存在正实数,使不等式对于一切的恒成立?若存在请求出的取值范围;若不存在请说明理由.18.在平面直角坐标系中,已知圆的方程为,过点的直线与圆交于两点,.(1)若,求直线的方程;(2)若直线与轴交于点,设,,,R,求的值.19.如图,在四棱锥中,平面,底面为菱形.(1)求证:平面;(2)若为的中点,,求证:平面平面.20.在平面直角坐标系中,以轴为始边,作两个角,它们终边分别经过点和,其中,,且.(1)求的值;(2)求的值.21.已知分别为三个内角的对边长,且(1)求角的大小;(2)若,求面积的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由,利用正弦定理可得,进而可得sin2A=sin2B,由此可得结论.【详解】∵,∴由正弦定理可得∴sinAcosA=sinBcosB∴sin2A=sin2B∴2A=2B或2A+2B=π∴A=B或A+B=∴△ABC的形状是等腰三角形或直角三角形故选D.【点睛】判断三角形形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而知其为钝角三角形.2、C【解析】

根据平均数的性质和方差的性质即可得到结果.【详解】根据平均数的线性性质,以及方差的性质:将一组数据每个数扩大2倍,且加1,则平均数也是同样的变化,方差变为原来的4倍,故变换后数据的平均数为:;方差为4.故选:C.【点睛】本题考查平均数和方差的性质,属基础题.3、B【解析】

本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由得出向量的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【详解】因为,所以=0,所以,所以=,所以与的夹角为,故选B.【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为.4、C【解析】

直接利用两直线垂直的充要条件列方程求解即可.【详解】因为直线kx+(1-k)y-3=0和直线(k-1)x+(2k+3)y-2=0互相垂直,所以k(k-1)+(1-k)(2k+3)=0,解方程可得k=1或k=-3,故选C.【点睛】本题主要考查直线与直线垂直的充要条件,属于基础题.对直线位置关系的考查是热点命题方向之一,这类问题以简单题为主,主要考查两直线垂直与两直线平行两种特殊关系:在斜率存在的前提下,(1)l1||l2⇔k15、D【解析】

直接利用正弦定理得到,带入化简得到答案.【详解】正弦定理:即:故选D【点睛】本题考查了正弦定理,意在考查学生的计算能力.6、D【解析】

设点,根据条件知点均在单位圆上,由向量数量积或斜率知识,可发现,对目标式子进行变形,发现其几何意义为两点到直线的距离之和有关.【详解】设,,均在圆上,且,设的中点为,则点到原点的距离为,点在圆上,设到直线的距离分别为,,,.【点睛】利用数形结合思想,发现代数式的几何意义,即构造系数,才能看出目标式子的几何意义为两点到直线距离之和的倍.7、A【解析】因为,若,则,,故选A.8、D【解析】

,计算出,然后将,得到答案.【详解】等比数列中,又因为,所以,所以,故选D项.【点睛】本题考查等比数列的基本量计算,属于简单题.9、C【解析】从21开始,输出的数是除以3余2,除以5余3,满足条件的是23,故选C.10、B【解析】

由三角函数的奇偶性和对称性可求得参数的值.【详解】由是奇函数得又因为得关于对称,所以,解得所以当时,得A答案;当时,得C答案;当时,得D答案;故选B.【点睛】本题考查三角函数的奇偶性和对称性,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:、、成等差数列考点:1.等差数列性质;2.等比数列通项公式12、【解析】试题分析:方程组无解等价于直线与直线平行,所以且.又,为正数,所以(),即取值范围是.考点:方程组的思想以及基本不等式的应用.13、5【解析】

先求出a⋅b,再求【详解】由题得a所以向量a与b夹角的余弦值为cosα=故答案为5【点睛】(1)本题主要考查向量的夹角的计算,意在考查学生对该知识的掌握水平和分析推理计算能力.(2)求两个向量的夹角一般有两种方法,方法一:cos<a,b>=a·bab,方法二:设a=(x1,y14、或【解析】

根据三角函数的性质求解即可【详解】,如图所示:则故答案为:或【点睛】本题考查由三角函数值求解对应自变量取值范围,结合图形求解能够避免错解,属于基础题15、【解析】

直接利用反三角函数求解角的大小,即可得到答案.【详解】因为,,根据反三角函数的性质,可得.故答案为:.【点睛】本题主要考查了三角方程的解法,以及反三角函数的应用,属于基础题.16、15【解析】分析:运用等比数列的前n项和公式与数列通项公式即可得出的值.详解:数列为等比数列,故答案为15.点睛:本题考查了等比数列的通项公式与前n项和公式,考查学生对基本概念的掌握能力与计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】分析:(1)利用的关系,求解;倒序相加求。(2)先用错位相减求,分离参数,使得对于一切的恒成立,转化为求的最值。详解:(1)时满足上式,故∵=1∴∵①∴②∴①+②,得.(2)∵,∴∴①,②①-②得即要使得不等式恒成立,恒成立对于一切的恒成立,即,令,则当且仅当时等号成立,故所以为所求.点睛:1、,一定要注意,当时要验证是否满足数列。2、等比乘等差结构的数列用错位相减。3、数列中的恒成立问题与函数中的恒成立问题解法一致。18、(1)(2)【解析】

(1)设斜率为,则直线的方程为,利用圆的弦长公式,列出方程求得的值,即可得到直线的方程;(2)当直线的斜率不存在时,根据向量的运算,求得,当直线的斜率存在时,设直线的方程为,联立方程组,利用根与系数的关系,以及向量的运算,求得,得到答案.【详解】(1)当直线的斜率不存在时,,不符合题意;当直线的斜率存在时,设斜率为,则直线的方程为,所以圆心到直线的距离,因为,所以,解得,所以直线的方程为..(2)当直线的斜率不存在时,不妨设,,,因为,,所以,,所以,,所以.当直线的斜率存在时,设斜率为,则直线的方程为:,因为直线与轴交于点,所以.直线与圆交于点,,设,,由得,,所以,;因为,,所以,,所以,,所以.综上,.【点睛】本题主要考查了直线与圆的位置关系的应用,以及向量的坐标运算,其中解答中熟记圆的弦长公式,以及联立方程组,合理利用根与系数的关系和向量的运算是解答的关键,着重考查了推理与运算能力,属于中档试题.19、(1)证明见解析,(2)证明见解析【解析】

(1)根据底面为菱形得到,根据线面垂直的性质得到,再根据线面垂直的判定即可得到平面.(2)首先利用线面垂直的判定证明平面,再利用面面垂直的判定证明平面平面即可.【详解】(1)因为底面为菱形,所以.平面,平面,所以.平面.(2)因为底面为菱形,且所以为等边三角形.因为为的中点,所以.又因为,所以.平面,平面,所以.平面.因为平面,所以平面平面.【点睛】本题第一问考查线面垂直的判定和性质,第二问考查面面垂直的判定,属于中档题.20、(1);(2).【解析】

(1)根据正弦的定义求得,再运用余弦的二倍角公式求解,(2)由(1)问可得、两点的坐标,从而再运用正切的和角公式求解.【详解】(1)由得:所以:(2)由则故因此.【点睛】本题考查三角函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论