版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆昌吉市一中2025届数学高一下期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.等比数列中,,则等于是()A. B.4 C. D.2.一张方桌的图案如图所示,将一颗豆子随机地扔到桌面上,假设豆子不落在线上,下列事件的概率:(1)豆子落在红色区域概率为;(2)豆子落在黄色区域概率为;(3)豆子落在绿色区域概率为;(4)豆子落在红色或绿色区域概率为;(5)豆子落在黄色或绿色区域概率为.其中正确的结论有()A.2个 B.3个 C.4个 D.5个3.若,是不同的直线,,是不同的平面,则下列命题中正确的是()A.若,,,则 B.若,,,则C.若,,,则 D.若,,,则4.在中,,,,则B等于()A.或 B. C. D.以上答案都不对5.在中,角A,B,C的对边分别为a,b,c.已知,,,则B为()A. B.或 C. D.或6.已知m,n表示两条不同直线,表示平面,下列说法正确的是()A.若则 B.若,,则C.若,,则 D.若,,则7.某中学高一从甲、乙两个班中各选出7名学生参加2019年第三十届“希望杯”全国数学邀请赛,他们取得成绩的茎叶图如图,其中甲班学生成绩的平均数是84,乙班学生成绩的中位数是83,则的值为()A.4 B.5 C.6 D.78.如图,圆O所在的平面,AB是圆O的直径,C是圆周上一点(与A、B均不重合),则图中直角三角形的个数是()A.1 B.2 C.3 D.49.若,直线的倾斜角等于()A. B. C. D.10.已知直线与圆C相切于点,且圆C的圆心在y轴上,则圆C的标准方程为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.省农科站要检测某品牌种子的发芽率,计划采用随机数表法从该品牌粒种子中抽取粒进行检测,现将这粒种子编号如下,,,,若从随机数表第行第列的数开始向右读,则所抽取的第粒种子的编号是.(下表是随机数表第行至第行)84421753315724550688770474476721763350258392120676630163785916955567199810507175128673580744395238793321123429786456078252420744381551001342996602795412.若,,则___________.13.已知,,则的值为.14.已知数列是首项为,公差为的等差数列,若数列是等比数列,则___________.15.若是三角形的内角,且,则等于_____________.16.(理)已知函数,若对恒成立,则的取值范围为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆过点,且与圆关于直线:对称.(1)求圆的标准方程;(2)设为圆上的一个动点,求的最小值.18.已知圆过点,且圆心在直线上.(1)求圆的方程;(2)平面上有两点,点是圆上的动点,求的最小值;(3)若是轴上的动点,分别切圆于两点,试问:直线是否恒过定点?若是,求出定点坐标,若不是,说明理由.19.解方程:.20.已知直线l过点(1,3),且在y轴上的截距为1.
(1)求直线l的方程;
(2)若直线l与圆C:(x-a)2+(y+a)2=5相切,求实数a的值.21.在中,、、分别是内角、、的对边,且.(1)求角的大小;(2)若,的面积为,求的周长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
利用等比数列通项公式直接求解即可.【详解】因为是等比数列,所以.故选:B【点睛】本题考查了等比数列通项公式的应用,属于基础题.2、B【解析】试题分析:方桌共有块,其中红色的由块,黄色的由块,,绿色的由块,所以(1)(2)(3)结论正确,故选择B.这里表面上看是与面积相关的几何概型,其实还是古典概型考点:古典概型的概率计算和事件间的关系.3、C【解析】
A中平面,可能垂直也可能平行或斜交,B中平面,可能平行也可能相交,C中成立,D中平面,可能平行也可能相交.【详解】A中若,,,平面,可能垂直也可能平行或斜交;B中若,,,平面,可能平行也可能相交;同理C中若,,则,分别是平面,的法线,必有;D中若,,,平面,可能平行也可能相交.故选C项.【点睛】本题考查空间中直线与平面,平面与平面的位置关系,属于简单题.4、C【解析】试题分析:由正弦定理得,得,结合得,故选C.考点:正弦定理.5、C【解析】
根据正弦定理得到,再根据知,得到答案.【详解】根据正弦定理:,即,根据知,故.故选:.【点睛】本题考查了根据正弦定理求角度,多解是容易发生的错误.6、B【解析】试题分析:线面垂直,则有该直线和平面内所有的直线都垂直,故B正确.考点:空间点线面位置关系.7、C【解析】
由均值和中位数定义求解.【详解】由题意,,由茎叶图知就是中位数,∴,∴.故选C.【点睛】本题考查茎叶图,考查均值与中位数,解题关键是读懂茎叶图.8、D【解析】
利用直径所对的圆周角为直角和线面垂直的判定定理和性质定理即可判断出答案.【详解】AB是圆O的直径,则AC⊥BC,由于PA⊥平面ABC,则PA⊥BC,即有BC⊥平面PAC,则有BC⊥PC,则△PBC是直角三角形;由于PA⊥平面ABC,则PA⊥AB,PA⊥AC,则△PAB和△PAC都是直角三角形;再由AC⊥BC,得∠ACB=90°,则△ACB是直角三角形.综上可知:此三棱锥P−ABC的四个面都是直角三角形.故选D.【点睛】本题考查直线与平面垂直的性质,考查垂直关系的推理与证明,属于基础题.9、A【解析】
根据以及可求出直线的倾斜角.【详解】,,且直线的斜率为,因此,直线的倾斜角为.故选:A.【点睛】本题考查直线倾斜角的计算,要熟悉斜率与倾斜角之间的关系,还要根据倾斜角的取值范围来求解,考查计算能力,属于基础题.10、C【解析】
先代入点可得,再根据斜率关系列式可得圆心坐标,然后求出半径,写出标准方程.【详解】将切点代入切线方程可得:,解得,设圆心为,所以,解得,所以圆的半径,所以圆的标准方程为.故选:.【点睛】本题考查了直线与圆的位置关系,属中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】试题分析:依据随机数表,抽取的编号依次为785,567,199,1.第四粒编号为1.考点:随机数表.12、【解析】
将等式和等式都平方,再将所得两个等式相加,并利用两角和的正弦公式可求出的值.【详解】若,,将上述两等式平方得,①,②,①+②可得,求得,故答案为.【点睛】本题考查利用两角和的正弦公式求值,解题的关键就是将等式进行平方,结合等式结构进行变形计算,考查运算求解能力,属于中等题.13、3【解析】
,故答案为3.14、或【解析】
由等比数列的定义得出,可得出,利用两角和与差的余弦公式化简可求得的值.【详解】由于数列是首项为,公差为的等差数列,则,,又数列是等比数列,则,即,即,即,整理得,即,可得,,因此,或.故答案为:或.【点睛】本题考查利用等差数列和等比数列的定义求参数,同时也涉及了两角和与差的余弦公式的化简计算,考查计算能力,属于中等题.15、【解析】∵是三角形的内角,且,∴故答案为点睛:本题是一道易错题,在上,,分两种情况:若,则;若,则有两种情况锐角或钝角.16、【解析】试题分析:函数要使对恒成立,只要小于或等于的最小值即可,的最小值是0,即只需满足,解得.考点:恒成立问题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
试题分析:(1)两个圆关于直线对称,那么就是半径相等,圆心关于直线对称,利用斜率相乘等于和中点在直线上建立方程,解方程组求出圆心坐标,同时求得圆的半径,由此求得圆的标准方程;(2)设,则,代入化简得,利用三角换元,设,所以.试题解析:(1)设圆心,则,解得,则圆的方程为,将点的坐标代入得,故圆的方程为.(2)设,则,且,令,∴,故的最小值为-1.考点:直线与圆的位置关系,向量.18、(1);(2)26;(3)直线恒过定点.证明见解析【解析】
(1)设圆心,根据则,求得和圆的半径,即可得到圆的方程;(2)设,化简得,根据圆的性质,即可求解;(3)设,圆方程,根据两圆相交弦的性质,求得相交弦的方程,进而可判定直线恒过定点.【详解】(1)由题意知,圆心在直线上,设圆心为,又因为圆过点,则,即,解得,所以圆心为,半径,所以圆方程为.(2)设,则,又由,所以,即的最小值为.(3)设,则以为直径的圆圆心为,半径为,则圆方程为,整理得,直线为圆与圆的相交弦,两式相减,可得得直线方程,即,令,解得,即直线恒过定点.【点睛】本题主要考查了圆的综合应用,其中解答中涉及到圆的标准方程的求解,圆的最值问题的求解,以及两圆的相交弦方程的求解及应用,着重考查了分析问题和解答问题的能力,属于中档试题.19、或或【解析】
由倍角公式可将题目中的方程变形解出来【详解】因为所以或由得由得所以所以或所以或综上:或或【点睛】,我们在解题的时候要灵活选择.20、(1)y=2x+1;(2)a=-2或【解析】
(1)求得直线的斜率,再由点斜式方程可得所求直线方程;(2)运用直线和圆相切的条件,即圆心到直线的距离等于半径,解方程可得所求值.【详解】(1)直线l过点(1,3),且在y轴上的截距为1,可得直线l的斜率为=2,则直线l的方程为y3=2(x1),即y=2x+1;
(2)若直线l与圆C:(xa)2+(y+a)2=5相切,
可得圆心(a,a)到直线l的距离为,即有
=,解得a=2或.【点睛】本题考查直线方程和圆方程的运用,考查直线和圆相切的条件,考查方程思想和运算能力,属于基
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《讯期安全修定版》课件
- 学年课程大纲与重难点分析计划
- 精心设计的幼儿园课程计划
- 《麻醉工作规范》课件
- 川大华西-神经解剖学-课件-神经系统的发生
- 预算控制与财务管理的计划
- 铁人挑战学校铁人项社团训练计划
- 电子数据处理委托合同三篇
- 实木类家具相关行业投资规划报告
- 发光二极管(LED)相关行业投资方案范本
- 形容词副词(专项训练)-2023年中考英语二轮复习
- 华南理工大学《自然语言处理》2021-2022学年期末试卷
- 广东开放大学2024秋《形势与政策(专)》形成性考核参考答案
- 部编版小学五年级语文上册第15课《小岛》精美课件(共53张课件)
- 线上客服外包合作协议书范文
- 2023-2024-深圳某中学初二年级上册数学期末测试卷
- 企业社会责任(CSR)与可持续发展规章制度
- 员工的工作态度指标评分标准示例-企业管理
- 供水设备相关项目实施方案
- 2024版年度中华人民共和国传染病防治法
- 辰显光电微型发光二极管(Micro-LED)生产基地项目环评报告表
评论
0/150
提交评论