版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省湛江市第一中学2025届高一数学第二学期期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,若不等式恒成立,则t的最大值为()A.4 B.6 C.8 D.92.已知函数和的定义域都是,则它们的图像围成的区域面积是()A. B. C. D.3.在中,内角、、所对的边分别为、、,且,则下列关于的形状的说法正确的是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定4.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为,则第八个单音的频率为()A. B. C. D.5.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()A. B. C. D.6.已知l,m是两条不同的直线,m⊥平面α,则“”是“l⊥m”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件7.已知2弧度的圆心角所对的弧长为2,则这个圆心角所对的弦长是()A. B. C. D.8.为了得到函数y=sin(x+A.向左平行移动π3B.向右平行移动π3C.向上平行移动π3D.向下平行移动π39.在等比数列{an}中,a2=8,a5=64,,则公比q为()A.2 B.3 C.4 D.810.在锐角中,内角,,的对边分别为,,,,,成等差数列,,则的周长的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.与终边相同的最小正角是______.12.如图,矩形中,,,是的中点,将沿折起,使折起后平面平面,则异面直线和所成的角的余弦值为__________.13.已知函数,,的图象如下图所示,则,,的大小关系为__________.(用“”号连接)14.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体的所有棱长和为_______.15.已知函数的部分图象如图所示,则_______.16.数列满足:,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列中,,.(1)求数列的通项公式;(2)求数列的前项和;(3)若对任意的,都有成立,求实数的取值范围.18.已知向量,.(I)若,共线,求的值.(II)若,求的值;(III)当时,求与夹角的余弦值.19.已知数列的前n项和为,且,求数列的通项公式.20.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF平面BEG21.在“新零售”模式的背景下,某大型零售公司推广线下分店,计划在S市的A区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这个x个分店的年收入之和.(1)该公司已经过初步判断,可用线性回归模型拟合y与x的关系,求y关于x的线性回归方程(2)假设该公司在A区获得的总年利润z(单位:百万元)与x,y之间的关系为,请结合(1)中的线性回归方程,估算该公司应在A区开设多少个分店时,才能使A区平均每个分店的年利润最大?(参考公式:,其中,)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
因为不等式恒成立,所以只求得的最小值即可,结合,用“1”的代换求其最小值.【详解】因为,,,若不等式恒成立,令y=,当且仅当且即时,取等号所以所以故t的最大值为1.故选:C【点睛】本题主要考查不等式恒成立和基本不等式求最值,还考查了运算求解的能力,属于中档题.2、C【解析】
由可得,所以的图像是以原点为圆心,为半径的圆的上半部分;再结合图形求解.【详解】由可得,作出两个函数的图像如下:则区域①的面积等于区域②的面积,所以他们的图像围成的区域面积为半圆的面积,即.故选C.【点睛】本题考查函数图形的性质,关键在于的识别.3、B【解析】
利用三角形的正、余弦定理判定.【详解】在中,内角、、所对的边分别为、、,且,由正弦定理得,得,则,为直角三角形.故选B【点睛】本题考查了三角形正弦定理的应用,属于基础题.4、B【解析】
根据等比数列通项公式,求得第八个单音的频率.【详解】根据等比数列通项公式可知第八个单音的频率为.故选:B.【点睛】本小题主要考查等比数列的通项公式,考查中国古代数学文化,属于基础题.5、B【解析】由三视图可知,该几何体是一个棱长为的正方体挖去一个圆锥的组合体,正方体体积为,圆锥体积为几何体的体积为,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.6、A【解析】
根据充分条件和必要条件的定义,结合线面垂直的性质进行判断即可.【详解】当m⊥平面α时,若l∥α”则“l⊥m”成立,即充分性成立,若l⊥m,则l∥α或l⊂α,即必要性不成立,则“l∥α”是“l⊥m”充分不必要条件,故选:A.【点睛】本题主要考查充分条件和必要条件的判断,结合线面垂直的性质和定义是解决本题的关键.难度不大,属于基础题7、D【解析】
由弧长公式求出圆半径,再在直角三角形中求解.【详解】,如图,设是中点,则,,,∴.故选D.【点睛】本题考查扇形弧长公式,在求弦长时,常在直角三角形中求解.8、A【解析】试题分析:为得到函数y=sin(x+π3)【考点】三角函数图象的平移【名师点睛】本题考查三角函数图象的平移,函数y=f(x)的图象向右平移a个单位长度得y=f(x-a)的图象,而函数y=f(x)的图象向上平移a个单位长度得y=f(x)+a的图象.左、右平移涉及的是x的变化,上、下平移涉及的是函数值f(x)的变化.9、A【解析】,选A.10、A【解析】
依题意求出,由正弦定理可得,再根据角的范围,可求出的范围,即可求得的周长的取值范围.【详解】依题可知,,由,可得,所以,即,而.∴,即.故的周长的取值范围为.故选:A.【点睛】本题主要考查正弦定理在解三角形中的应用,两角和与差的正弦公式的应用,以及三角函数的值域求法的应用,意在考查学生的转化能力和数学运算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据终边相同的角的定义以及最小正角的要求,可确定结果.【详解】因为,所以与终边相同的最小正角是.故答案为:.【点睛】本题主要考查终边相同的角,属于基础题.12、【解析】
取中点为,中点为,连接,则异面直线和所成角为.在中,利用边长关系得到余弦值.【详解】由题意,取中点,连接,则,可得直线和所成角的平面角为,(如图)过作垂直于,平面⊥平面,,平面,,且,结合平面图形可得:,,,又=,∴=,∴在中,=,∴△DFC是直角三角形且,可得.【点睛】本题考查了异面直线的夹角,意在考查学生的计算能力和空间想象能力.13、【解析】函数y=ax,y=xb,y=logcx的图象如图所示,由指数函数y=ax,x=2时,y∈(1,2);对数函数y=logcx,x=2,y∈(0,1);幂函数y=xb,x=2,y∈(1,2);可得a∈(1,2),b∈(0,1),c∈(2,+∞).可得b<a<c故答案为:b<a<c.14、【解析】
取半正多面体的截面正八边形,设半正多面体的棱长为,过分别作于,于,可知,,可求出半正多面体的棱长及所有棱长和.【详解】取半正多面体的截面正八边形,由正方体的棱长为1,可知,易知,设半正多面体的棱长为,过分别作于,于,则,,解得,故该半正多面体的所有棱长和为.【点睛】本题考查了空间几何体的结构,考查了空间想象能力与计算求解能力,属于中档题.15、【解析】
由图可得,即可求得:,再由图可得:当时,取得最大值,即可列方程,整理得:,解得:(),结合即可得解.【详解】由图可得:,所以,解得:由图可得:当时,取得最大值,即:整理得:,所以()又,所以【点睛】本题主要考查了三角函数图象的性质及观察能力,还考查了转化思想及计算能力,属于中档题.16、【解析】
可通过赋值法依次进行推导,找出数列的周期,进而求解【详解】由,,当时,;当时,;当时,;当时,;当时,,当故数列从开始,以3为周期故故答案为:【点睛】本题考查数列的递推公式,能根据递推公式找出数列的规律是解题的关键,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】
(1)利用递推公式求出,,递推到当时,,两个式子相减,得到,进而求出数列的通项公式;(2)运用错位相减法可以求出数列的前项和;(3)对任意的,都有成立,转化为的最小值即可,利用商比的方法可以确定数列的单调性,最后求出实数的取值范围.【详解】(1)数列{an}中,,.可得时,,即,时,,又,两式相减可得,化为,可得,即,综上可得;(2),则前项和,,相减可得,化为;(3)对任意的,都有成立,即为的最小值,由可得,,可得时,递增,当或2时,取得最小值,则.【点睛】本题考查了已知递推公式求数列通项公式,考查了数列的单调性,考查了错位相减法,考查了数学运算能力.18、(I);(II);(III)【解析】
(1)根据题意,由向量平行的坐标公式可得﹣2x=4,解可得x的值,即可得答案;(2)若,则有,结合向量数量积的坐标可得,即4x﹣2=0,解可得x的值,即可得答案;(3)根据题意,由x的值可得的坐标,由向量的坐标计算公式可得、和的值,结合,计算可得答案.解:(I)∵与共线,∴,(II)∵,∴,∴(III)∵,∵,,∴,又∵,∴.19、【解析】
利用公式,计算的通项公式,再验证时的情况.【详解】当时,;当时,不满足上式.∴【点睛】本题考查了利用求数列通项公式,忽略的情况是容易犯的错误.20、(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析.【解析】
(Ⅰ)点F,G,H的位置如图所示(Ⅱ)平面BEG∥平面ACH.证明如下因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG又FG∥EH,FG=EH,所以BC∥EH,BC=EH于是BCEH为平行四边形所以BE∥CH又CH平面ACH,BE平面ACH,所以BE∥平面ACH同理BG∥平面ACH又BE∩BG=B所以平面BEG∥平面ACH(Ⅲ)连接FH因为ABCD-EFGH为正方体,所以DH⊥平面EFGH因为EG平面EFGH,所以DH⊥EG又EG⊥FH,EG∩FH=O,所以EG⊥平面BFHD又DF平面BFDH,所以DF⊥EG同理DF⊥BG又EG∩BG=G所以DF⊥平面BEG.考点:本题主要考查简单空间图形的直观图、空间线面平行与垂直的判定与性质等基础知识,考查空间想象能力、推理论证能力.21、(1);(2)该公司应开设4个分店时,在该区的每个分店的平均利润最大【解析】
(1)由表中数据先求得.再结合公式分别求得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度出租车行业品牌推广协议
- 2024年度项目合作与投资合同模板
- 程序员2024年度团队协作协议
- 保密协议完整版
- 二零二四年度LED显示屏生产设备采购合同
- 2024年度电力传输合同标的:新建跨区域电力线路工程设计与施工
- 北京市二零二四年度广告代理合同
- 2024年度购物中心品牌特许经营合同
- 二零二四年度工程款结算与审计合同3篇
- 二零二四年度旅游业务合作与代理合同
- 12千伏环网柜(箱)标准化设计定制方案(2019版)
- 医院装修工程量清单
- 最新四川省教师资格认定体检表.docx
- 永磁电动机使用说明书胜利顺天
- 球形网架结构的吊顶施工做法
- 孟母三迁(课堂PPT)
- 人教版八年级数学上册14.3.2《公式法》第2课时 教 案
- 股东会同意借款决议范本专业版
- 《南州六月荔枝丹》学习要点
- 九年义务教育全日制小学音乐教学器材配备目录
- MSDS(10-100048)聚脂烤漆
评论
0/150
提交评论