2023-2024学年河北省鹿泉一中等名校高一下数学期末经典试题含解析_第1页
2023-2024学年河北省鹿泉一中等名校高一下数学期末经典试题含解析_第2页
2023-2024学年河北省鹿泉一中等名校高一下数学期末经典试题含解析_第3页
2023-2024学年河北省鹿泉一中等名校高一下数学期末经典试题含解析_第4页
2023-2024学年河北省鹿泉一中等名校高一下数学期末经典试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年河北省鹿泉一中等名校高一下数学期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,分别是角的对边,,则角为()A. B. C. D.或2.已知,并且是第二象限的角,那么的值等于()A. B. C. D.3.设的内角所对边的长分别为,若,则角=()A. B.C. D.4.一个几何体的三视图分别是一个正方形,一个矩形,一个半圆,尺寸大小如图所示,则该几何体的体积是()A. B. C. D.5.若正实数,满足,则有下列结论:①;②;③;④.其中正确结论的个数为()A.1 B.2 C.3 D.46.在中,为的中点,,则()A. B. C.3 D.-37.在等差数列中,,则的值()A. B. C. D.8.不等式的解集是()A. B.C. D.9.已知数列且是首项为2,公差为1的等差数列,若数列是递增数列,且满足,则实数a的取值范围是()A. B.C. D.10.().A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若直线:与直线的交点位于第一象限,则直线的倾斜角的取值范围是___________.12.在平面直角坐标系中,定义两点之间的直角距离为:现有以下命题:①若是轴上的两点,则;②已知,则为定值;③原点与直线上任意一点之间的直角距离的最小值为;④若表示两点间的距离,那么.其中真命题是__________(写出所有真命题的序号).13.已知在数列中,,,则数列的通项公式______.14.把函数的图像上各点向右平移个单位,再把横坐标变为原来的一半,纵坐标扩大到原来的4倍,则所得的函数的对称中心坐标为________15.在中,三个角所对的边分别为.若角成等差数列,且边成等比数列,则的形状为_______.16.已知,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知:的顶点,,.(1)求AB边上的中线CD所在直线的方程;(2)求的面积.18.已知函数,.(1)求解不等式;(2)若,求的最小值.19.数列满足,.(1)试求出,,;(2)猜想数列的通项公式并用数学归纳法证明.20.已知向量,.求:(1);(2)与的夹角的余弦值;(3)求的值使与为平行向量.21.已知.(I)若函数有三个零点,求实数的值;(II)若对任意,均有恒成立,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由正弦定理,可得,即可求解的大小,得到答案.【详解】在中,因为,由正弦定理,可得,又由,且,所以或,故选D.【点睛】本题主要考查了正弦定理的应用,其中解答中熟练利用正弦定理,求得的值是解答的关键,着重考查了推理与运算能力,属于基础题.2、A【解析】

根据同角三角函数关系,进行求解即可.【详解】因为,故又因为是第二象限的角,故故.故选:A.【点睛】本题考查同角三角函数关系的简单使用,属基础题.3、B【解析】

试题分析:,由正弦定理可得即;因为,所以,所以,而,所以,故选B.考点:1.正弦定理;2.余弦定理.4、C【解析】

由给定的几何体的三视图得到该几何体表示一个底面半径为1,母线长为2的半圆柱,结合圆柱的体积公式,即可求解.【详解】由题意,根据给定的几何体的三视图可得:该几何体表示一个底面半径为1,母线长为2的半圆柱,所以该半圆柱的体积为.故选:C.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.5、C【解析】

根据不等式的基本性质,逐项推理判断,即可求解,得到答案.【详解】由题意,正实数是正数,且,①中,可得,所以是错误的;②中,由,可得是正确的;③中,根据实数的性质,可得是正确的;④中,因为,所以是正确的,故选C.【点睛】本题主要考查了不等式的性质的应用,其中解答中熟记不等式的基本性质,合理推理是解答的关键,着重考查了推理与运算能力,属于基础题.6、A【解析】

本题中、长度已知,故可以将、作为基底,将向量用基底表示,从而解决问题.【详解】解:在中,因为为的中点,所以,故选A【点睛】向量数量积问题常见解题方法有1.基底法,2.坐标法.基底法首先要选择两个不共线向量作为基向量,然后将其余向量向基向量转化,然后根据数量积公式进行计算;坐标法则要建立直角坐标系,然后将向量用坐标表示,进而运用向量坐标的运算规则进行计算.7、B【解析】

根据等差数列的性质,求得,再由,即可求解.【详解】根据等差数列的性质,可得,即,则,故选B.【点睛】本题主要考查了等差数列的性质,以及特殊角的三角函数值的计算,着重考查了推理与运算能力,属于基础题.8、D【解析】

把不等式,化简为不等式,即可求解,得到答案.【详解】由题意,不等式,可化为,即,解得或,所以不等式的解集为.故选:D.【点睛】本题主要考查了分式不等式的求解,其中解答中熟记分式不等式的解法,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.9、D【解析】

根据等差数列和等比数列的定义可确定是以为首项,为公比的等比数列,根据等比数列通项公式,进而求得;由数列的单调性可知;分别在和两种情况下讨论可得的取值范围.【详解】由题意得:,,是以为首项,为公比的等比数列为递增数列,即①当时,,,即只需即可满足②当时,,,即只需即可满足综上所述:实数的取值范围为故选:【点睛】本题考查根据数列的单调性求解参数范围的问题,涉及到等差和等比数列定义的应用、等比数列通项公式的求解、对数运算法则的应用等知识;解题关键是能够根据单调性得到关于变量和的关系式,进而通过分离变量的方式将问题转化为变量与关于的式子的最值的大小关系问题.10、D【解析】

运用诱导公式进行化简,最后逆用两角和的正弦公式求值即可.【详解】,故本题选D.【点睛】本题考查了正弦的诱导公式,考查了逆用两角和的正弦公式,考查了特殊角的正弦值.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】若直线与直线的交点位于第一象限,如图所示:则两直线的交点应在线段上(不包含点),当交点为时,直线的倾斜角为,当交点为时,斜率,直线的倾斜角为∴直线的倾斜角的取值范围是.故答案为12、①②④【解析】

根据新定义的直角距离,结合具体选项,进行逐一分析即可.【详解】对①:因为是轴上的两点,故,则,①正确;对②:根据定义因为,故,②正确;对③:根据定义,当且仅当时,取得最小值,故③错误;对④:因为,由不等式,即可得,故④正确.综上正确的有①②④故答案为:①②④.【点睛】本题考查新定义问题,涉及同角三角函数关系,绝对值三角不等式,属综合题.13、【解析】

通过变形可知,累乘计算即得结论.【详解】∵(n+1)an=nan+1,∴,∴,,…,,累乘得:,又∵a1=1,∴an=n,故答案为:an=n.【点睛】本题考查数列的通项公式的求法,利用累乘法是解决本题的关键,注意解题方法的积累,属于中档题.14、,【解析】

根据三角函数的图象变换,求得函数的解析式,进而求得函数的对称中心,得到答案.【详解】由题意,把函数的图像上各点向右平移个单位,可得,再把图象上点的横坐标变为原来的一半,可得,把函数纵坐标扩大到原来的4倍,可得,令,解得,所以函数的对称中心为.故答案为:.【点睛】本题主要考查了三角函数的图象变换,以及三角函数的对称中心的求解,其中解答中熟练三角函数的图象变换,以及三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.15、等边三角形【解析】

分析:角成等差数列解得,边成等比数列,则,再根据余弦定理得出的关系式.详解:角成等差数列,则解得,边成等比数列,则,余弦定理可知故为等边三角形.点睛:判断三角形形状,是根据题意推导边角关系的恒等式.16、【解析】

对已知等式的左右两边同时平方,利用同角的三角函数关系式和二倍角的正弦公式,可以求出的值,再利用二倍角的余弦公式可以求出.【详解】因为,所以,即,所以.【点睛】本题考查了同角的三角函数关系,考查了二倍角的正弦公式和余弦公式,考查了数学运算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)11.【解析】

(1)直接利用已知条件求出AB边上的中点,即可求直线的方程.(2)利用所求出的直线方程利用分割法求出三角形的面积,或者求出及直线AB的方程,可得点C到直线AB的距离,求出三角形的面积.【详解】(1)∵线段AB的中点D的坐标为,所以,由两点式方程可得,AB边上的中线CD所在直线的方程为,即.(2)法1:因为,点A到直线CD的距离是,所以的面积是.法2:因为,由两点式得直线AB的方程为:,点C到直线AB的距离是,所以的面积是.【点睛】本题考查直线方程求法与点到直线距离公式应用,属于基础题.18、(1)或(2)【解析】

(1)对x分类讨论解不等式得解;(2)由题得,再利用基本不等式求函数的最小值.【详解】解:(1)当时,,解得.当时,,解得.所以不等式解集为或.(2),当且仅当,即时取等号.【点睛】本题主要考查分式不等式的解法,考查基本不等式求函数的最值,意在考查学生对这些知识的理解掌握水平,属于基础题.19、(1),,(2),证明见详解.【解析】

(1)由题意得,在中分别令可求结果;(2)由数列前四项可猜想,运用数学归纳法可证明.【详解】解:(1),当时,,,当时,,,当时,,,所以,,(2)猜想下面用数学归纳法证明:假设时,有成立,则当时,有,故对成立.【点睛】该题考查由数列递推式求数列的项、通项公式,考查数学归纳法,考查学生的运算求解能力.20、(1)5(2)(3)【解析】

(1)利用向量坐标运算法则,先求出向量的坐标,再求模;(2)利用两个向量的数量积的定义和公式,则可求出与的夹角的余弦值;(3)利用两个向量共线的性质,求出的值.【详解】(1)向量,,,;(2)设与的夹角为,∵,,,所以,即与的夹角的余弦值为;(3)由题可得:,∵与为平行向量,∴,解得,即满足使与为平行向量.【点睛】本题主要考查向量的坐标运算,涉及向量的模,数量积,共线等相关知识,属于基础题.21、(I)或;(II).【解析】

(I)令,将有三个零点问题,转化为有三个不同的解的解决.画出和的图像,结合图像以及二次函数的判别式分类讨论,由此求得的值.(II)令,将恒成立不等式等价转化为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论