版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届重庆江津长寿巴县等七校数学高一下期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是()A.3.5 B.3 C.-0.5 D.-32.函数的最小值为(
)A.6 B.7 C.8 D.93.已知函数的最小正周期是,其图象向右平移个单位后得到的函数为奇函数.有下列结论:①函数的图象关于点对称;②函数的图象关于直线对称;③函数在上是减函数;④函数在上的值域为.其中正确结论的个数是()A.1 B.2 C.3 D.44.设为直线,是两个不同的平面,下列说法中正确的是()A.若,则B.若,则C.若,则D.若,则5.函数图像的一个对称中心是()A. B. C. D.6.延长正方形的边至,使得.若动点从点出发,沿正方形的边按逆时针方向运动一周回到点,若,下列判断正确的是()A.满足的点必为的中点B.满足的点有且只有一个C.的最小值不存在D.的最大值为7.数列,通项公式为,若此数列为递增数列,则的取值范围是A. B. C. D.8.在ΔABC中,角A、B、C所对的边分别为a、b、c,A=45°,B=30°,b=2,则a=()A.2 B.63 C.229.在平行四边形ABCD中,,,E是CD的中点,则()A.2 B.-3 C.4 D.610.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为()(参考数据:)A.48 B.36 C.24 D.12二、填空题:本大题共6小题,每小题5分,共30分。11.下图是2016年在巴西举行的奥运会上,七位评委为某体操运动员的单项比赛打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差为__________.12.辗转相除法,又名欧几里得算法,是求两个正整数之最大公约数的算法,它是已知最古老的算法之一,在中国则可以追溯至汉朝时期出现的《九章算术》.下图中的程序框图所描述的算法就是辗转相除法.若输入、的值分别为、,则执行程序后输出的的值为______.13.观察下列等式:(1);(2);(3);(4),……请你根据给定等式的共同特征,并接着写出一个具有这个共同特征的等式(要求与已知等式不重复),这个等式可以是__________________.(答案不唯一)14.当时,的最大值为__________.15.已知,,若,则____16.求的值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.等差数列中,,.(1)求通项公式;(2)若,求的最小值.18.已知函数,的部分图像如图所示,点,,都在的图象上.(1)求的解析式;(2)当时,恒成立,求的取值范围.19.在等差数列中,已知.(1)求通项;(2)求的前项和.20.已知数列满足,.(1)证明:是等比数列;(2)求数列的前n项和.21.用红、黄、蓝三种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,求3个矩形颜色都不同的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
因为错将其中一个数据105输入为15,所以此时求出的数比实际的数差是,因此平均数之间的差是.故答案为D2、C【解析】
直接利用均值不等式得到答案.【详解】,时等号成立.故答案选C【点睛】本题考查了均值不等式,属于简单题.3、C【解析】
根据函数最小正周期可求得,由函数图象平移后为奇函数,可求得,即可得函数的解析式.再根据正弦函数的对称性判断①②,利用函数的单调区间判断③,由正弦函数的图象与性质判断④即可.【详解】函数的最小正周期是则,即向右平移个单位可得由为奇函数,可知解得因为所以当时,则对于①,当时,代入解析式可得,即点不为对称中心,所以①错误;对于②,当时带入的解析式可得,所以函数的图象关于直线对称,所以②正确;对于③,的单调递减区间为解得当时,单调递减区间为,而,所以函数在上是减函数,故③正确;对于④,当时,由正弦函数的图像与性质可知,,故④正确.综上可知,正确的为②③④故选:C【点睛】本题考查根据三角函数性质和平移变换求得解析式,再根据正弦函数的图像与性质判断选项,属于基础题.4、C【解析】
画出长方体,按照选项的内容在长方体中找到相应的情况,即可得到答案【详解】对于选项A,在长方体中,任何一条棱都和它相对的两个平面平行,但这两个平面相交,所以A不正确;对于选项B,若,分别是长方体的上、下底面,在下底面所在平面中任选一条直线,都有,但,所以B不正确;对于选项D,在长方体中,令下底面为,左边侧面为,此时,在右边侧面中取一条对角线,则,但与不垂直,所以D不正确;对于选项C,设平面,且,因为,所以,又,所以,又,所以,所以C正确.【点睛】本题考查直线与平面的位置关系,属于简单题5、B【解析】
由题得,解出x的值即得函数图像的一个对称中心.【详解】由题得,所以,所以图像的对称中心是.当k=1时,函数的对称中心为.故选B【点睛】本题主要考查三角函数图像的对称中心的求法,意在考查学生对该知识的理解掌握水平,属于基础题.6、D【解析】试题分析:设正方形的边长为1,建立如图所示直角坐标系,则的坐标为,则设,由得,所以,当在线段上时,,此时,此时,所以;当在线段上时,,此时,此时,所以;当在线段上时,,此时,此时,所以;当在线段上时,,此时,此时,所以;由以上讨论可知,当时,可为的中点,也可以是点,所以A错;使的点有两个,分别为点与中点,所以B错,当运动到点时,有最小值,故C错,当运动到点时,有最大值,所以D正确,故选D.考点:向量的坐标运算.【名师点睛】本题考查平面向量线性运算,属中档题.平面向量是高考的必考内容,向量坐标化是联系图形与代数运算的渠道,通过构建直角坐标系,使得向量运算完全代数化,通过加、减、数乘的运算法则,实现了数形的紧密结合,同时将参数的取值范围问题转化为求目标函数的取值范围问题,在解题过程中,还常利用向量相等则坐标相同这一原则,通过列方程(组)求解,体现方程思想的应用.7、B【解析】因为的对称轴为,因为此数列为递增数列,所以.8、C【解析】
利用正弦定理得到答案.【详解】asin故答案选C【点睛】本题考查了正弦定理,意在考查学生的计算能力.9、A【解析】
由平面向量的线性运算可得,再结合向量的数量积运算即可得解.【详解】解:由,,所以,,,则,故选:A.【点睛】本题考查了平面向量的线性运算,重点考查了向量的数量积运算,属中档题.10、C【解析】
由开始,按照框图,依次求出s,进行判断。【详解】,故选C.【点睛】框图问题,依据框图结构,依次准确求出数值,进行判断,是解题关键。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由平均数公式可得,故所求数据的方差是,应填答案。12、【解析】
程序的运行功能是求,的最大公约数,根据辗转相除法可得的值.【详解】由程序语言知:算法的功能是利用辗转相除法求、的最大公约数,当输入的,,;,,可得输出的.【点睛】本题主要考查了辗转相除法的程序框图的理解,掌握辗转相除法的操作流程是解题关键.13、【解析】
观察式子特点可知,分子上两余弦的角的和是,分母上两个正弦的角的和是,据此规律即可写出式子【详解】观察式子规律可总结出一般规律:,可赋值,得故答案为:【点睛】本题考查归纳推理能力,能找出余角关系和补角关系是解题的关键,属于基础题14、-3.【解析】
将函数的表达式改写为:利用均值不等式得到答案.【详解】当时,故答案为-3【点睛】本题考查了均值不等式,利用一正二定三相等将函数变形是解题的关键.15、【解析】
由,,得的坐标,根据得,由向量数量积的坐标表示即可得结果.【详解】∵,,∴又∵,∴,即,所以,解得,故答案为.【点睛】本题主要考查了向量的坐标运算,两向量垂直与数量积的关系,属于基础题.16、44.5【解析】
通过诱导公式,得出,依此类推,得出原式的值.【详解】,,同理,,故答案为44.5.【点睛】本题主要考查了三角函数中的诱导公式的运用,得出是解题的关键,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)等差数列中,由,,能求出通项公式.(2)利用等差数列前项和公式得到不等式,即可求出的最小值.【详解】解:(1)等差数列中,,.通项公式,即(2),,解得(舍去或,,的最小值为1.【点睛】本题考查等差数列的通项公式、项数的求法,考查等差数列的性质等基础知识,考查运算求解能力,属于基础题.18、(1);(2)【解析】
(1)由三角函数图像,求出即可;(2)求出函数的值域,再列不等式组求解即可.【详解】解:(1)由的图象可知,则,因为,,所以,故.因为在函数的图象上,所以,所以,即,因为,所以.因为点在函数的图象上,所以,解得,故.(2)因为,所以,所以,则.因为,所以,所以,解得.故的取值范围为.【点睛】本题考查了利用三角函数图像求解析式,重点考查了三角函数值域的求法,属中档题.19、(1),(2)【解析】
(1)设出等差数列的基本量,首项和公差,根据条件列出方程组,解出和,写出的通项.(2)由(1)中求出的基本量,根据等差数列的求和公式,写出【详解】设等差数列的首项为,公差为,,解得(2)由(1)可知,【点睛】本题考查等差数列基本量计算,等差数列通项和求和的求法,属于简单题.20、(1)见解析;(2).【解析】
(1)由题设,化简得,即可证得数列为等比数列.(2)由(1),根据等比数列的通项公式,求得,利用等比数列的前n项和公式,即可求得数列的前n项和.【详解】(1)由题意,数列满足,所以又因为,所以,即,所以是以2为首项,2为公比的等比数列.(2)由(1),根据等比数列的通项公式,可得,即,所以,即.【点睛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度高校教师高级职称聘用协议5篇
- 2025年二手车买卖数据安全及隐私保护协议3篇
- 2025年度二零二五年度体育用品店租赁及销售合同范本4篇
- 2025版美容美发店员工福利待遇与晋升管理合同4篇
- 对公金融产品的多场景创新研究
- 2025年度校园车位租赁及管理服务合同样本3篇
- 2024水电工程设计与施工一体化合同范本3篇
- 2025年度专业厨房设备维修保养服务合同11篇
- 2025年度铝扣板装饰工程材料供应合同范本3篇
- 个人借款用于二零二四年度创业投资合同3篇
- 工会换届公示文件模板
- 江苏省南京市协同体七校2024-2025学年高三上学期期中联合考试英语试题答案
- 青岛版二年级下册三位数加减三位数竖式计算题200道及答案
- GB/T 12723-2024单位产品能源消耗限额编制通则
- GB/T 16288-2024塑料制品的标志
- 麻风病防治知识课件
- 干部职级晋升积分制管理办法
- TSG ZF003-2011《爆破片装置安全技术监察规程》
- 2024年代理记账工作总结6篇
- 电气工程预算实例:清单与计价样本
- VOC废气治理工程中电化学氧化技术的研究与应用
评论
0/150
提交评论