吉林省农安县普通高中2023-2024学年高一数学第二学期期末调研试题含解析_第1页
吉林省农安县普通高中2023-2024学年高一数学第二学期期末调研试题含解析_第2页
吉林省农安县普通高中2023-2024学年高一数学第二学期期末调研试题含解析_第3页
吉林省农安县普通高中2023-2024学年高一数学第二学期期末调研试题含解析_第4页
吉林省农安县普通高中2023-2024学年高一数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省农安县普通高中2023-2024学年高一数学第二学期期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的最小正周期为,若,则的最小值为()A. B. C. D.2.过点且与原点距离最大的直线方程是()A. B.C. D.3.在中,已知,,,则的形状为()A.钝角三角形 B.锐角三角形 C.直角三角形 D.不能确定4.命题“”的否定是()A., B.,C., D.,5.已知等差数列an的前n项和为18,若S3=1,aA.9 B.21 C.27 D.366.干支纪年法是中国历法上自古以来就一直使用的纪年方法,主要方式是由十天干(甲、乙、丙、丁、戊、己、废、辛、壬、朵)和十二地支(子、丑、卯、辰、已、午、未、中、百、戊、)按顺序配对,周而复始,循环记录.如:1984年是甲子年,1985年是乙丑年,1994年是甲戌年,则数学王子高斯出生的1777年是干支纪年法中的()A.丁申年 B.丙寅年 C.丁酉年 D.戊辰年7.已知函数,在下列函数图像中,不是函数的图像的是()A. B. C. D.8.下列命题中不正确的是()A.平面∥平面,一条直线平行于平面,则一定平行于平面B.平面∥平面,则内的任意一条直线都平行于平面C.一个三角形有两条边所在的直线分别平行于一个平面,那么该三角形所在的平面与这个平面平行D.分别在两个平行平面内的两条直线只能是平行直线或异面直线9.函数y=2cosx-1A.2,-2 B.1,-3 C.1,-1 D.2,-110.已知函数是奇函数,若,则的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.一个圆锥的侧面积为,底面积为,则该圆锥的体积为________.12.计算:________.13.方程在区间的解为_______.14.已知正方体的棱长为,点、分别为、的中点,则点到平面的距离为______.15.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点.在上面结论中,正确结论的编号是________.(写出所有正确结论的编号)16.已知当时,函数(且)取得最小值,则时,的值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的值;(2)求的最大值和最小值.18.如图,已知平面,为矩形,分别为的中点,.(1)求证:平面;(2)求证:面平面;(3)求点到平面的距离.19.如图,在平面四边形中,,,,,.(1)求的长;(2)求的长.20.已知函数(1)求的最小正周期;(2)求的单调增区间;(3)若求函数的值域.21.某校为了了解学生每天平均课外阅读的时间(单位:分钟),从本校随机抽取了100名学生进行调查,根据收集的数据,得到学生每天课外阅读时间的频率分布直方图,如图所示,若每天课外阅读时间不超过30分钟的有45人.(Ⅰ)求,的值;(Ⅱ)根据频率分布直方图,估计该校学生每天课外阅读时间的中位数及平均值(同一组中的数据用该组区间的中点值代表).

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由正弦型函数的最小正周期可求得,得到函数解析式,从而确定函数的最大值和最小值;根据可知和必须为最大值点和最小值点才能够满足等式;利用整体对应的方式可构造方程组求得,;从而可知时取最小值.【详解】由最小正周期为可得:,和分别为的最大值点和最小值点设为最大值点,为最小值点,当时,本题正确选项:【点睛】本题考查正弦型函数性质的综合应用,涉及到正弦型函数最小正周期和函数值域的求解;关键是能够根据函数的最值确定和为最值点,从而利用整体对应的方式求得结果.2、A【解析】

当直线与垂直时距离最大,进而可得直线的斜率,从而得到直线方程。【详解】原点坐标为,根据题意可知当直线与垂直时距离最大,由两点斜率公式可得:所以所求直线的斜率为:故所求直线的方程为:,化简可得:故答案选A【点睛】本题考查点到直线的距离公式,涉及直线的点斜式方程和一般方程,属于基础题。3、A【解析】

由正弦定理得出,从而得出可能为钝角或锐角,分类讨论这两种情况,结合正弦函数的单调性即可判断.【详解】由正弦定理得可能为钝角或锐角当为钝角时,,符合题意,所以为钝角三角形;当为锐角时,由于在区间上单调递增,则,所以,即为钝角三角形综上,为钝角三角形故选:A【点睛】本题主要考查了利用正弦定理判断三角形的形状,属于中档题.4、B【解析】

含有一个量词的命题的否定,注意“改量词,否结论”.【详解】改为,改成,则有:.故选:B.【点睛】本题考查含一个量词的命题的否定,难度较易.5、C【解析】

利用前n项和Sn的性质可求n【详解】因为S3而a1所以6Snn【点睛】一般地,如果an为等差数列,Sn为其前(1)若m,n,p,q∈N*,m+n=p+q,则am(2)Sn=n(3)Sn=An(4)Sn6、C【解析】

天干是以10为公差的等差数列,地支是以12为公差的等差数列,按照这个规律进行推理,即可得到结果.【详解】由题意,天干是以10为公差的等差数列,地支是以12为公差的等差数列,1994年是甲戌年,则1777的天干为丁,地支为酉,故选:C.【点睛】本题主要考查了等差数列的定义及等差数列的性质的应用,其中解答中认真审题,合理利用等差数列的定义,以及等差数列的性质求解是解答的关键,着重考查了推理与运算能力,属于基础题.7、C【解析】

根据幂函数图像不过第四象限选出选项.【详解】函数为幂函数,图像不过第四象限,所以C中函数图像不是函数的图像.故选:C.【点睛】本小题主要考查幂函数图像不过第四象限,属于基础题.8、A【解析】

逐一考查所给的选项是否正确即可.【详解】逐一考查所给的选项:A.平面∥平面,一条直线平行于平面,可能a在平面内或与相交,不一定平行于平面,题中说法错误;B.由面面平行的定义可知:若平面∥平面,则内的任意一条直线都平行于平面,题中说法正确;C.由面面平行的判定定理可得:若一个三角形有两条边所在的直线分别平行于一个平面,那么该三角形所在的平面与这个平面平行,题中说法正确;D.分别在两个平行平面内的两条直线只能是平行直线或异面直线,不可能相交,题中说法正确.本题选择A选项.【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.9、B【解析】

根据余弦函数有界性确定最值.【详解】因为-1≤cosx≤1,所以【点睛】本题考查余弦函数有界性以及函数最值,考查基本求解能力,属基本题.10、C【解析】

由题意首先求得m的值,然后结合函数的性质求解不等式即可.【详解】函数为奇函数,则恒成立,即恒成立,整理可得:,据此可得:,即恒成立,据此可得:.函数的解析式为:,,当且仅当时等号成立,故奇函数是定义域内的单调递增函数,不等式即,据此有:,由函数的单调性可得:,求解不等式可得的取值范围是.本题选择C选项.【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为解不等式(组)的问题,若f(x)为偶函数,则f(-x)=f(x)=f(|x|).二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

设圆锥的底面半径为,母线长为,由圆锥的侧面积、圆面积公式列出方程组求解,代入圆锥的体积公式求解.【详解】设圆锥的底面半径为,母线长为,其侧面积为,底面积为,则,解得,,∴高===,∴==.故答案为:.【点睛】本题考查圆锥的体积的求法,考查圆锥的侧面积、底面积、体积公式等基础知识,考查运算求解能力,属于基础题.12、3【解析】

直接利用数列的极限的运算法则求解即可.【详解】.故答案为:3【点睛】本题考查数列的极限的运算法则,考查计算能力,属于基础题.13、或【解析】

由题意求得,利用反三角函数求出方程在区间的解.【详解】解:,得,,或,;方程在区间的解为:或.故答案为:或.【点睛】本题考查了三角函数方程的解法与应用问题,是基础题.14、【解析】

作出图形,取的中点,连接,证明平面,可知点平面的距离等于点到平面的距离,然后利用等体积法计算出点到平面的距离,即为所求.【详解】如下图所示,取的中点,连接,在正方体中,且,、分别为、的中点,且,所以,四边形为平行四边形,且,又,,平面,平面,平面,则点平面的距离等于点到平面的距离,的面积为,在正方体中,平面,且平面,,易知三棱锥的体积为.的面积为.设点到平面的距离为,则,.故答案为:.【点睛】本题考查点到平面的距离的求法,是中档题,解题时要认真审题,注意等体积法的合理运用.15、①②④【解析】用正方体ABCD-A1B1C1D1实例说明A1D1与BC1在平面ABCD上的投影互相平行,AB1与BC1在平面ABCD上的投影互相垂直,BC1与DD1在平面ABCD上的投影是一条直线及其外一点.故①②④正确.16、3【解析】

先根据计算,化简函数,再根据当时,函数取得最小值,代入计算得到答案.【详解】或当时,函数取得最小值:或(舍去)故答案为3【点睛】本题考查了三角函数的化简,辅助角公式,函数的最值,综合性较强,意在考查学生的综合应用能力和计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),.【解析】

(1)直接将值代入即可求得对应的函数值.(2)将函数化简为的形式,并求出最大值,最小值【详解】(1).(2),当时,取得最大值;当时,取得最小值.【点睛】本题主要考查了求三角函数值、三角恒等变换以及三角函数的性质,属于基础题.18、(1)证明见解析;(2)证明见解析;(3).【解析】

(1)利用线面平行的判定定理,寻找面PAD内的一条直线平行于MN,即可证出;(2)先证出一条直线垂直于面PCD,依据第一问结论知,MN也垂直于面PCD,利用面面垂直的判定定理即可证出;(3)依据等积法,即可求出点到平面的距离.【详解】证明:(1)取中点为,连接分别为的中点,是平行四边形,平面,平面,∴平面证明:(2)因为平面,所以,而,面PAD,而面,所以,由,为的终点,所以由于平面,又由(1)知,平面,平面,∴平面平面解:(3),,,则点到平面的距离为(也可构造三棱锥)【点睛】本题主要考查线面平行、面面垂直的判定定理以及等积法求点到面的距离,意在考查学生的直观想象、逻辑推理、数学运算能力.19、(1);(2)【解析】

(1)在中,先得到再利用正弦定理得到.(2)在中,计算,由余弦定理得到,再用余弦定理得到.【详解】(1)在中,,则,又由正弦定理,得(2)在中,,则,又即是等腰三角形,得.由余弦定理,得所以.在中,由余弦定理,得所以.【点睛】本题考查了正弦定理和余弦定理,意在考查学生利用正余弦定理解决问题的能力.20、(1)(2);(3).【解析】

(1)先化简函数f(x)的解析式,再求函数的最小正周期;(2)解不等式,即得函数的增区间;(3)根据三角函数的性质求函数的值域.【详解】(1)由题得,所以函数的最小正周期为.(2)令,所以,所以函数的单调增区间为.(3),所以函数的值域为.【点睛】本题主要考查三角恒等变换,考查三角函数的图像和性质,考查三角函数的值域,意在考查学生对这些知识的理解掌握

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论