版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省阜新市2024年高一数学第二学期期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.《九章算术》中有这样一个问题:今有竹九节,欲均减容之(其意为:使容量均匀递减),上三节容四升,下三节容二升,中三节容几何?()A.二升 B.三升 C.四升 D.五升2.椭圆以轴和轴为对称轴,经过点(2,0),长轴长是短轴长的2倍,则椭圆的方程为()A. B.C.或 D.或3.在中,,BC边上的高等于,则A. B. C. D.4.如图,程序框图所进行的求和运算是()A. B.C. D.5.已知直线过点,且在纵坐标轴上的截距为横坐标轴上的截距的两倍,则直线的方程为()A. B.C.或 D.或6.已知数列是各项均为正数且公比不等于的等比数列.对于函数,若数列为等差数列,则称函数为“保比差数列函数”.现有定义在上的如下函数:①;②;③;④,则为“保比差数列函数”的所有序号为()A.①② B.③④ C.①②④ D.②③④7.已知直线l过点且与直线垂直,则l的方程是()A. B.C. D.8.以椭圆的两个焦点为直径的端点的圆与椭圆交于四个不同的点,顺次连接这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率为()A. B. C. D.9.下列说法正确的是()A.命题“若,则.”的否命题是“若,则.”B.是函数在定义域上单调递增的充分不必要条件C.D.若命题,则10.直线的倾斜角不可能为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设公差不为零的等差数列的前项和为,若,则__________.12.现用一半径为,面积为的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________.13.求值:_____.14.数列的前项和为,已知,且对任意正整数,都有,若恒成立,则实数的最小值为________.15.在平面直角坐标系xOy中,双曲线的右支与焦点为F的抛物线交于A,B两点若,则该双曲线的渐近线方程为________.16.将边长为1的正方形ABCD沿对角线AC折起,使平面ACD⊥平面ABC,则折起后B,D两点的距离为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知小岛A的周围38海里内有暗礁,船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后在C处测得小岛A在船的南偏东45°,如果此船不改变航向,继续向南航行,问有无触礁的危险?18.已知△ABC内角A,B,C的对边分别是a,b,c,且.(Ⅰ)求A;(Ⅱ)若,求△ABC面积的最大值.19.已知函数的最小正周期为,且直线是其图象的一条对称轴.(1)求函数的解析式;(2)在中,角、、所对的边分别为、、,且,,若角满足,求的取值范围;(3)将函数的图象向右平移个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的倍后所得到的图象对应的函数记作,已知常数,,且函数在内恰有个零点,求常数与的值.20.如图,在四棱锥中,底面为菱形,、、分别是棱、、的中点,且平面.(1)求证:平面;(2)求证:平面.21.的内角A,B,C的对边分别为a,b,c,已知(1)求A;(2)若A为锐角,,的面积为,求的周长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
由题意可得,上、中、下三节的容量成等差数列.再利用等差数列的性质,求出中三节容量,即可得到答案.【详解】由题意,上、中、下三节的容量成等差数列,上三节容四升,下三节容二升,则中三节容量为,故选B.【点睛】本题主要考查了等差数列的性质的应用,其中解答中熟记等差数列的等差中项公式是解答的关键,着重考查了运算与求解能力,属于基础题.2、C【解析】
由于椭圆长轴长是短轴长的2倍,即,又椭圆经过点(2,0),分类讨论,即可求解.【详解】由于椭圆长轴长是短轴长的2倍,即,又椭圆经过点(2,0),则若焦点在x轴上,则,,椭圆方程为;若焦点在y轴上,则,,椭圆方程为,故选C.【点睛】本题主要考查了椭圆的方程的求解,其中解答中熟记椭圆的标准方程的形式,合理分类讨论是解答的关键,着重考查了推理与运算能力,属于基础题.3、D【解析】试题分析:设边上的高线为,则,所以.由正弦定理,知,即,解得,故选D.【考点】正弦定理【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.4、A【解析】
根据当型循环结构,依次代入计算的值,即可得输出的表达式.【详解】根据循环结构程序框图可知,,,,…,,跳出循环体,所以结果为,故选:A.【点睛】本题考查了当型循环结构的应用,执行循环体计算输出值,属于基础题.5、D【解析】
根据题意,分直线是否经过原点2种情况讨论,分别求出直线的方程,即可得答案.【详解】根据题意,直线分2种情况讨论:①当直线过原点时,又由直线经过点,所求直线方程为,整理为,②当直线不过原点时,设直线的方程为,代入点的坐标得,解得,此时直线的方程为,整理为.故直线的方程为或.故选:D.【点睛】本题考查直线的截距式方程,注意分析直线的截距是否为0,属于基础题.6、C【解析】
①,为“保比差数列函数”;②,为“保比差数列函数”;③不是定值,不是“保比差数列函数”;④,是“保比差数列函数”,故选C.考点:等差数列的判定及对数运算公式点评:数列,若有是定值常数,则是等差数列7、A【解析】
直线2x–3y+1=0的斜率为则直线l的斜率为所以直线l的方程为故选A8、D【解析】
四个交点中的任何一个到焦点的距离和都是,然后分析正六边形中的长度和焦距的关系,从而建立等式求解.【详解】设椭圆的焦点是,圆与椭圆的四个交点是,设,,,,.故选D.【点睛】本题考查了椭圆的定义和椭圆的性质,属于基础题型9、D【解析】“若p则q”的否命题是“若则”,所以A错。在定义上并不是单调递增函数,所以B错。不存在,C错。全称性命题的否定是特称性命题,D对,选D.10、D【解析】
根据直线方程,分类讨论求得直线的斜率的取值范围,进而根据倾斜角和斜率的关系,即可求解,得到答案.【详解】由题意,可得当时,直线方程为,此时倾斜角为;当时,直线方程化为,则斜率为:,即,又由,解得或,又由且,所以倾斜角的范围为,显然A,B都符合,只有D不符合,故选D.【点睛】本题主要考查了直线方程的应用,以及直线的倾斜角和斜率的关系,着重考查了分类讨论思想,以及推理与运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
设出数列的首项和公差,根据等差数列通项公式和前项和公式,代入条件化简得和的关系,再代入所求的式子进行化简求值.【详解】解:设等差数列的首项为,公差为,由,得,得,.故答案为:【点睛】本题考查了等差数列通项公式和前n项和公式的简单应用,属于基础.12、【解析】分析:由圆锥的几何特征,现用一半径为,面积为的扇形铁皮制作一个无盖的圆锥形容器,则圆锥的底面周长等于扇形的弧长,圆锥的母线长等于扇形的半径,由此计算出圆锥的高,代入圆锥体积公式,即可求出答案.解析:设铁皮扇形的半径和弧长分别为R、l,圆锥形容器的高和底面半径分别为h、r,则由题意得R=10,由,得,由得.由可得.该容器的容积为.故答案为.点睛:涉及弧长和扇形面积的计算时,可用的公式有角度表示和弧度表示两种,其中弧度表示的公式结构简单,易记好用,在使用前,应将圆心角用弧度表示.13、【解析】
根据同角三角函数的基本关系:,以及反三角函数即可解决。【详解】由题意.故答案为:.【点睛】本题主要考查了同角三角函数的基本关系,同角角三角函数基本关系主要有:,.属于基础题。14、【解析】令,可得是首项为,公比为的等比数列,所以,,实数的最小值为,故答案为.15、【解析】
根据题意到,联立方程得到,得到答案.【详解】,故.,故,故,故.故双曲线渐近线方程为:.故答案为:.【点睛】本题考查了双曲线的渐近线问题,意在考查学生的计算能力和综合应用能力.16、1.【解析】
取AC的中点E,连结DE,BE,可知DE⊥AC,由平面ACD⊥平面ABC,可得DE⊥平面ABC,DE⊥BE,而,再结合ABCD是正方形可求出.【详解】取AC的中点E,连结DE,BE,显然DE⊥AC,因为平面ACD⊥平面ABC,所以DE⊥平面ABC,所以DE⊥BE,而,所以,.【点睛】本题考查了空间中两点间的距离,把空间角转化为平面角是解决本题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、继续向南航行无触礁的危险.【解析】试题分析:要判断船有无触礁的危险,只要判断A到BC的直线距离是否大于38海里就可以判断.解:在三角形ABC中:BC=30,∠B=30°,∠ACB=180°-45°=135°,故∠A=15°由正弦定理得:故于是A到BC的直线距离是Acsin45°==,大于38海里.答:继续向南航行无触礁的危险.考点:本题主要考查正弦定理的应用点评:分析几何图形的特征,运用三角形内角和定理确定角的关系,有助于应用正弦定理.18、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用正弦定理,三角函数恒等变换,可得,结合范围,可求的值.(Ⅱ)方法1:由余弦定理,基本不等式可得,利用三角形的面积公式即可求解;方法2:由正弦定理可得,,并将其代入可得,然后再化简,根据正弦函数的图象和性质即可求得面积的最大值.【详解】解:(I)因为,由正弦定理可得:,所以所以,即,,所以,可得:,所以,所以,可得:(II)方法1:由余弦定理得:,得,所以当且仅当时取等号,所以△ABC面积的最大值为方法2:因为,所以,,所以,所以,当且仅当,即,当时取等号.所以△ABC面积的最大值为.【点睛】本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,基本不等式,三角形的面积公式,正弦函数的图象和性质在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.19、(1);(2);(3),.【解析】
(1)由函数的周期公式可求出的值,求出函数的对称轴方程,结合直线为一条对称轴结合的范围可得出的值,于此得出函数的解析式;(2)由得出,再由结合锐角三角函数得出,利用正弦定理以及内角和定理得出,由条件得出,于此可计算出的取值范围;(3)令,得,换元得出,得出方程,设该方程的两根为、,由韦达定理得出,分(ii)、;(ii),;(iii),三种情况讨论,计算出关于的方程在一个周期区间上的实根个数,结合已知条件得出与的值.【详解】(1)由三角函数的周期公式可得,,令,得,由于直线为函数的一条对称轴,所以,,得,由于,,则,因此,;(2),由三角形的内角和定理得,.,且,,.,由,得,由锐角三角函数的定义得,,由正弦定理得,,,,且,,,.,因此,的取值范围是;(3)将函数的图象向右平移个单位,得到函数,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的倍后所得到的图象对应的函数为,,令,可得,令,得,,则关于的二次方程必有两不等实根、,则,则、异号,(i)当且时,则方程和在区间均有偶数个根,从而方程在也有偶数个根,不合乎题意;(ii)当,则,当时,只有一根,有两根,所以,关于的方程在上有三个根,由于,则方程在上有个根,由于方程在区间上只有一个根,在区间上无实解,方程在区间上无实数解,在区间上有两个根,因此,关于的方程在区间上有个根,在区间上有个根,不合乎题意;(iii)当时,则,当时,只有一根,有两根,所以,关于的方程在上有三个根,由于,则方程在上有个根,由于方程在区间上无实数根,在区间上只有一个实数根,方程在区间上有两个实数解,在区间上无实数解,因此,关于的方程在区间上有个根,在区间上有个根,此时,,得.综上所述:,.【点睛】本题考查利用三角函数的性质求三角函数的解析式,以及三角形中的取值范围问题,以及三角函数零点个数问题,同时也涉及了复合函数方程解的个数问题,考查分类讨论思想的应用,综合性较强,属于难题.20、(1)见解析;(2)见解析【解析】
(1)取中点,连接,,得,利用直线与平面平行的判定定理证明平面.(2)连结,由已知条件得,由平面,得,利用直线与平面垂直的判定定理证明平面.【详解】(1)取中点,连接,,∵、分别是棱、的中点,∴,且.∵在菱形中,是的中点,∴,且,∴且,∴为平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肩胛颈骨折病因介绍
- 初中语文课件教学
- 心电图导联课件
- 部编版四年级语文上册口语交际《爱护眼睛保护视力》精美课件
- 老年人甲状腺功能减退症病因介绍
- 物流管理基础课件 情境3子情境1 成本管理
- 向量的数量积习题课课件
- 二零二四年度供应商评价与分类管理合同3篇
- 泌尿系统结石病因介绍
- (高考英语作文炼句)第36天译文老师笔记
- 统编版(2024)七年级上册道德与法治第三单元《珍爱我们的生命》学情调研测试卷(含答案)
- 2025届上海市二中学高二数学第一学期期末考试模拟试题含解析
- 《义务教育语文课程标准》2022年修订版原版
- 全国赛课一等奖人美版美术二年级上册《过春节》课件
- 2024年事业单位招聘考试公共基础知识单选题库及答案(共316题)
- 泰戈尔-飞鸟集中英文版全
- 货物抵账合同协议书范本
- 五年级上册道法全册教案
- 垃圾分类知识竞赛200题(100道单选-100道多选-有答案)
- 自来水厂运行工试题库题库及答案
- 2024年朝阳道路旅客运输驾驶员从业资格考试试题及答案
评论
0/150
提交评论