2024届辽宁省大连市第十六中学数学高一下期末经典模拟试题含解析_第1页
2024届辽宁省大连市第十六中学数学高一下期末经典模拟试题含解析_第2页
2024届辽宁省大连市第十六中学数学高一下期末经典模拟试题含解析_第3页
2024届辽宁省大连市第十六中学数学高一下期末经典模拟试题含解析_第4页
2024届辽宁省大连市第十六中学数学高一下期末经典模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届辽宁省大连市第十六中学数学高一下期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数,是偶函数的为()A. B. C. D.2.在中,若°,°,.则=A. B. C. D.3.已知等差数列的前项之和为,前项和为,则它的前项的和为()A.B.C.D.4.已知,,则在方向上的投影为()A. B. C. D.5.已知直线,,若,则()A.2 B. C. D.16.函数的最大值是()A. B. C. D.7.在等差数列中,若,则()A.8 B.12 C.14 D.108.设函数是定义在上的奇函数,当时,,则()A.-4 B. C. D.9.如图的折线图为某小区小型超市今年一月份到五月份的营业额和支出数据(利润=营业额-支出),根据折线图,下列说法中正确的是()A.该超市这五个月中,利润随营业额的增长在增长B.该超市这五个月中,利润基本保持不变C.该超市这五个月中,三月份的利润最高D.该超市这五个月中的营业额和支出呈正相关10.过曲线的左焦点且和双曲线实轴垂直的直线与双曲线交于点A,B,若在双曲线的虚轴所在的直线上存在—点C,使得,则双曲线离心率e的最小值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.中,,,,则________.12.若,则实数的值为_______.13.设为,的反函数,则的值域为______.14.若直线始终平分圆的周长,则的最小值为________15.已知等比数列、、、满足,,,则的取值范围为__________.16.已知数列是等差数列,,那么使其前项和最小的是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在等差数列中,(Ⅰ)求通项;(Ⅱ)求此数列前30项的绝对值的和.18.如图,四面体中,分别是的中点,,.(1)求证:平面;(2)求三棱锥的体积.19.设,,.(1)若,求实数的值;(2)若,求实数的值.20.在中,角,,所对的边分别为,,,且.(Ⅰ)求角的大小;(Ⅱ)若的面积为,其外接圆的半径为,求的周长.21.已知函数.(1)求函数图象的对称轴方程;(2)若对于任意的,恒成立,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

逐项判断各项的定义域是否关于原点对称,再判断是否满足即可得解.【详解】易知各选项的定义域均关于原点对称.,故A错误;,故B正确;,故C错误;,故D错误.故选:B.【点睛】本题考查了诱导公式的应用和函数奇偶性的判断,属于基础题.2、A【解析】∵在△ABC中,A=45∘,B=60∘,a=2,∴由正弦定理得:.本题选择A选项.3、C【解析】试题分析:由于等差数列中也成等差数列,即成等差数列,所以,故选C.考点:等差数列前项和的性质.4、A【解析】在方向上的投影为,选A.5、D【解析】

当为,为,若,则,由此求解即可【详解】由题,因为,所以,即,故选:D【点睛】本题考查已知直线垂直求参数问题,属于基础题6、B【解析】

令,再计算二次函数定区间上的最大值。【详解】令则【点睛】本题考查利用换元法将计算三角函数的最值转化为计算二次函数定区间上的最值。属于基础题。7、C【解析】

将,分别用和的形式表示,然后求解出和的值即可表示.【详解】设等差数列的首项为,公差为,则由,,得解得,,所以.故选C.【点睛】本题考查等差数列的基本量的求解,难度较易.已知等差数列的任意两项的值,可通过构建和的方程组求通项公式.8、A【解析】

由奇函数的性质可得:即可求出【详解】因为是定义在上的奇函数,所以又因为当时,,所以,所以,选A.【点睛】本题主要考查了函数的性质中的奇偶性。其中奇函数主要有以下几点性质:1、图形关于原点对称。2、在定义域上满足。3、若定义域包含0,一定有。9、D【解析】

根据折线图,分析出超市五个月中利润的情况以及营业额和支出的相关性.【详解】对于A选项,五个月的利润依次为:,其中四月比三月是下降的,故A选项错误.对于B选项,五月的月份是一月和四月的两倍,说明利润有比较大的波动,故B选项错误.对于C选项,五个月的利润依次为:,所以五月的利润最高,故C选项错误.对于D选项,根据图像可知,超市这五个月中的营业额和支出呈正相关,故D选项正确.故选:D【点睛】本小题主要考查折线图的分析与理解,属于基础题.10、C【解析】

设双曲线的方程为:,(a>0,b>0),依题意知当点C在坐标原点时,∠ACB最大,∠AOF1≥45°,利用tan∠AOF1,即可求得双曲线离心率e的取值范围.求出最小值.【详解】设双曲线的方程为:,(a>0,b>0),∵双曲线关于x轴对称,且直线AB⊥x轴,设左焦点F1(﹣c,0),则A(﹣c,),B(﹣c,),∵△ABC为直角三角形,依题意知,当点C在坐标原点时,∠ACB最大,∴∠AOF1≥45°,∴tan∠AOF11,整理得:()21≥0,即e2﹣e﹣1≥0,解得:e.即双曲线离心率e的最小值为:.故选:C【点睛】本题考查双曲线的简单性质,分析得到当点C在坐标原点时,∠ACB最大是关键,得到∠AOF1≥45°是突破口,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、7【解析】

在中,利用余弦定理得到,即可求解,得到答案.【详解】由余弦定理可得,解得.故答案为:7.【点睛】本题主要考查了余弦定理的应用,其中解答中熟记三角形的余弦定理,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】

由得,代入方程即可求解.【详解】,.,,,即,故填.【点睛】本题主要考查了反三角函数的定义及运算性质,属于中档题.13、【解析】

求出原函数的值域可得出其反函数的定义域,取交集可得出函数的定义域,再由函数的单调性可求出该函数的值域.【详解】函数在上为增函数,则函数的值域为,所以,函数的定义域为.函数的定义域为,由于函数与函数单调性相同,可知,函数在上为增函数.当时,函数取得最小值;当时,函数取得最大值.因此,函数的值域为.故答案为:.【点睛】本题考查函数值域的求解,考查函数单调性的应用,明确两个互为反函数的两个函数具有相同的单调性是解题的关键,考查分析问题和解决问题的能力,属于中等题.14、9【解析】

平分圆的直线过圆心,由此求得的等量关系式,进而利用基本不等式求得最小值.【详解】由于直线始终平分圆的周长,故直线过圆的圆心,即,所以.【点睛】本小题主要考查直线和圆的位置关系,考查利用基本不等式求最小值,属于基础题.15、【解析】

设等比数列、、、的公比为,由和计算出的取值范围,再由可得出的取值范围.【详解】设等比数列、、、的公比为,,,,所以,,,.所以,,故答案为:.【点睛】本题考查等比数列通项公式及其性质,解题的关键就是利用已知条件求出公比的取值范围,考查运算求解能力,属于中等题.16、5【解析】

根据等差数列的前n项和公式,判断开口方向,计算出对称轴,即可得出答案。【详解】因为等差数列前项和为关于的二次函数,又因为,所以其对称轴为,而,所以开口向上,因此当时最小.【点睛】本题考查等差数列前n项和公式的性质,属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)765【解析】试题分析:(Ⅰ)由题意可得:进而得到数列通项公式为;(Ⅱ)由(Ⅰ)可得当时,,所以采用分组求和即可试题解析:(Ⅰ)∵即.∴.∴.(Ⅱ)由,则.∴=.考点:1.求数列通项公式;2.数列求和18、(1)见解析;(2)【解析】

(1)连接,由等腰三角形三线合一,可得,,再勾股定理可得,进而根据线面垂直的判定定理得到平面;(2)根据等积法可得,结合(1)中结论,可得即为棱锥的高,代入棱锥的体积公式,可得答案.【详解】证明:(1)连接.,,.,为中点,,,为中点,,,在中,,,,,,即.又,,平面平面.(2)等边的面积为,为中点而,.【点睛】本题考查的知识点是直线与平面垂直的判定,棱锥的体积公式,熟练掌握空间直线与直线垂直、直线与平面垂直之间的转化关系是解答的关键,属于中档题.19、(1);(2)【解析】

(1)由向量加法的坐标运算可得:,再由向量平行的坐标运算即可得解.(2)由向量垂直的坐标运算即可得解.【详解】解:(1),,,,,故,所以.(2),,,所以.【点睛】本题考查了向量加法的坐标运算、向量平行和垂直的坐标运算,属基础题.20、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)由由正弦定理得,进而得到,求得,即可求解;(Ⅱ)由(Ⅰ)和正弦定理,求得,再由余弦定理得,利用三角形的面积公式,求得,进而求得的值,得出三角形的周长.【详解】(Ⅰ)由题意,因为,由正弦定理,得,即,由,得,又由,则,所以,解得,又因为,所以.(Ⅱ)由(Ⅰ)知,且外接圆的半径为,由正弦定理可得,解得,由余弦定理得,可得,因为的面积为,解得,所以,解得:,所以的周长.【点睛】本题主要考查了三角恒等变换的应用,以及正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论