福建省罗源县第一中学2024届数学高一下期末学业质量监测试题含解析_第1页
福建省罗源县第一中学2024届数学高一下期末学业质量监测试题含解析_第2页
福建省罗源县第一中学2024届数学高一下期末学业质量监测试题含解析_第3页
福建省罗源县第一中学2024届数学高一下期末学业质量监测试题含解析_第4页
福建省罗源县第一中学2024届数学高一下期末学业质量监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省罗源县第一中学2024届数学高一下期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在数列中,若,,,设数列满足,则的前项和为()A. B. C. D.2.在某种新型材料的研制中,实验人员获得了下列一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是()345.156.1264.04187.51218.01A. B. C. D.3.已知A(3,1),B(-1,2),若∠ACB的平分线方程为y=x+1,则AC所在的直线方程为()A.y=2x+4 B.y=x-3 C.x-2y-1=0 D.3x+y+1=04.点关于直线的对称点的坐标为()A. B. C. D.5.已知等比数列的前项和为,若,则()A. B. C.5 D.66.已知中,,,,则B等于()A. B.或 C. D.或7.在长方体中,,,则异面直线与所成角的余弦值为()A. B. C. D.8.在中,角,,所对的边分别为,,,则下列命题中正确命题的个数为()①若,则;②若,则为钝角三角形;③若,则.A.1 B.2 C.3 D.09.已知数列满足,则()A. B. C. D.10.计算的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在四面体ABCD中,平面ABC,,,若四面体ABCD的外接球的表面积为,则四面体ABCD的体积为_______.12.已知,,与的夹角为钝角,则的取值范围是_____;13.圆上的点到直线的距离的最小值是______.14.若直线与圆相切,则________.15.函数的部分图象如图所示,则函数的解析式为______.16.中,三边所对的角分别为,若,则角______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设向量,,其中.(1)若,求的值;(2)若,求的值.18.已知角的顶点与原点重合,其始边与轴正半轴重合,终边与单位圆交于点,若,且.(1)求的值;(2)求的值.19.在锐角中,角,,的对边分别为,,,若.(1)求角;(2)若,则周长的取值范围.20.如图所示,函数的图象与轴交于点,且该函数的最小正周期为.(1)求和的值;(2)已知点,点是该函数图象上一点,点是的中点,当时,求的值.21.为保障高考的公平性,高考时每个考点都要安装手机屏蔽仪,要求在考点周围1km内不能收到手机信号,检查员抽查某市一考点,在考点正西约km/h的的B处有一条北偏东60°方向的公路,在此处检查员用手机接通电话,以每小时12千米的速度沿公路行驶,最多需要多少时间,检查员开始收不到信号,并至少持续多长时间该考点才算合格?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

利用等差中项法得知数列为等差数列,根据已知条件可求出等差数列的首项与公差,由此可得出数列的通项公式,利用对数与指数的互化可得出数列的通项公式,并得知数列为等比数列,利用等比数列前项和公式可求出.【详解】由可得,可知是首项为,公差为的等差数列,所以,即.由,可得,所以,数列是以为首项,以为公比的等比数列,因此,数列的前项和为,故选D.【点睛】本题考查利用等差中项法判断等差数列,同时也考查了对数与指数的互化以及等比数列的求和公式,解题的关键在于结合已知条件确定数列的类型,并求出数列的通项公式,考查运算求解能力,属于中等题.2、A【解析】

由表中的数据分析得:自变量基本上是等速增加,相应的函数值增加的速度越来越快,结合基本初等函数的单调性,即可得出答案.【详解】对于A:函数在是单调递增,且函数值增加速度越来越快,将自变量代入,相应的函数值,比较接近,符合题意,所以正确;对于B:函数值随着自变量增加是等速的,不合题意;对于C:函数值随着自变量的增加比线性函数还缓慢,不合题意;选项D:函数值随着自变量增加反而减少,不合题意.故选:A.【点睛】本题考查函数模型的选择和应用问题,解题的关键是掌握各种基本初等函数,如一次函数,二次函数,指数函数,对数函数的图像与性质,属于基础题.3、C【解析】设点A(3,1)关于直线的对称点为,则,解得,即,所以直线的方程为,联立解得,即,又,所以边AC所在的直线方程为,选C.点睛:本题主要考查了直线方程的求法,属于中档题。解题时要结合实际情况,准确地进行求解。4、D【解析】令,设对称点的坐标为,可得的中点在直线上,故可得①,又可得的斜率,由垂直关系可得②,联立①②解得,即对称点的坐标为,故选D.点睛:本题考查对称问题,得出中点在直线且连线与已知直线垂直是解决问题的关键,属中档题;点关于直线成轴对称问题,由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”,利用“垂直”即斜率关系,“平分”即中点在直线上这两个条件建立方程组,就可求出对称点的坐标.5、A【解析】

先通分,再利用等比数列的性质求和即可。【详解】.故选A.【点睛】本题考查等比数列的性质,属于基础题。6、D【解析】

根据题意和正弦定理求出sinB的值,由边角关系、内角的范围、特殊角的三角函数值求出B.【详解】由题意得,△ABC中,a=1,,A=30°,由得,sinB,又b>a,0°<B<180°,则B=60°或B=120°,故选:D.【点睛】本题考查正弦定理,以及边角关系的应用,注意内角的范围,属于基础题.7、C【解析】

连接,交于,取的中点,连接、,可以证明是异面直线与所成角,利用余弦定理可求其余弦值.【详解】连接,交于,取的中点,连接.由长方体可得四边形为矩形,所以为的中点,因为为的中点,所以,所以或其补角是异面直线与所成角.在直角三角形中,则,,所以.在直角三角形中,,在中,,故选C.【点睛】空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.8、C【解析】

根据正弦定理和大角对大边判断①正确;利用余弦定理得到为钝角②正确;化简利用余弦定理得到③正确.【详解】①若,则;根据,则即,即,正确②若,则为钝角三角形;,为钝角,正确③若,则即,正确故选C【点睛】本题考查了正弦定理和余弦定理,意在考查学生对于正弦定理和余弦定理的灵活运用.9、B【解析】

分别令,求得不等式,由此证得成立.【详解】当时,,当时,,当时,,所以,所以,故选B.【点睛】本小题主要考查根据数列递推关系判断项的大小关系,属于基础题.10、D【解析】

直接由二倍角的余弦公式,即可得解.【详解】由二倍角公式得:,故选D.【点睛】本题考查了二倍角的余弦公式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

易得四面体为长方体的一角,再根据长方体体对角线等于外接球直径,再利用对角线公式求解即可.【详解】因为四面体中,平面,且,.故四面体是以为一个顶点的长方体一角.设则因为四面体的外接球的表面积为,设其半径为,故.解得.故四面体的体积.故答案为:【点睛】本题主要考查了长方体一角的四面体的外接球有关问题,需要注意长方体体对角线等于外接球直径.属于中档题.12、【解析】

与的夹角为钝角,即数量积小于0.【详解】因为与的夹角为钝角,所以与的数量积小于0且不平行.且所以【点睛】本题考查两向量的夹角为钝角的坐标表示,一定注意数量积小于0包括平角.13、【解析】

求圆心到直线的距离,用距离减去半径即可最小值.【详解】圆C的圆心为,半径为,圆心C到直线的距离为:,所以最小值为:故答案为:【点睛】本题考查圆上的点到直线的距离的最值,若圆心距为d,圆的半径为r且圆与直线相离,则圆上的点到直线距离的最大值为d+r,最小值为d-r.14、1【解析】

利用圆心到直线的距离等于半径列方程,解方程求得的值.【详解】由于直线和圆相切,所以圆心到直线的距离,即,由于,所以.故答案为:【点睛】本小题主要考查直线和圆的位置关系,考查点到直线的距离公式,属于基础题.15、【解析】

根据三角函数图象依次求得的值.【详解】由图象可知,,所以,故,将点代入上式得,因为,所以.故.故答案为:【点睛】本小题主要考查根据三角函数的图象求三角函数的解析式,属于基础题.16、【解析】

利用余弦定理化简已知条件,求得的值,进而求得的大小.【详解】由得,由于,所以.【点睛】本小题主要考查余弦定理解三角形,考查特殊角的三角函数值,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)由向量垂直的坐标运算求出,再构造齐次式求解即可;(2)先由向量的模的运算求得,再由求解即可.【详解】解:(1)若,则,得,所以;(2)因为,,则,因为,所以,即,化简得,即,所以,因为,所以,则,所以,,所以,故.【点睛】本题考查了三角函数构造齐次式求值,重点考查了两角差的正弦公式及二倍角公式,属中档题.18、(1);(2)【解析】

(1)平方处理求出,根据角的范围可得,即可得解;(2)变形处理,结合(1)已计算的结果即可求解.【详解】(1)由题:角的顶点与原点重合,其始边与轴正半轴重合,终边与单位圆交于点,若,,即,两边平方可得:,,所以;(2)【点睛】此题考查同角三角函数的关系,根据平方关系处理同角正余弦的和差积三者关系,利用平方关系合理变形求值.19、(1)(2)【解析】

(1)利用切化成弦和余弦定理对等式进行化简,得角的正弦值;(2)利用成正弦定理把边化成角,从而实现的周长用角B的三角函数进行表示,即周长,再根据锐角三角形中角,求得函数值域.【详解】(1)由,得到,又,所以.(2),,设周长为,由正弦定理知,由合分比定理知,即,,即.又因为为锐角三角形,所以.,周长.【点睛】对运动变化问题,首先要明确变化的量是什么?或者选定什么量为变量?然后,利用函数与方程思想,把所求的目标表示成关于变量的函数,再研究函数性质进行问题求解.20、(1)..(2),或.【解析】试题分析:(1)由三角函数图象与轴交于点可得,则.由最小正周期公式可得.(2)由题意结合中点坐标公式可得点的坐标为.代入三角函数式可得,结合角的范围求解三角方程可得,或.试题解析:(1)将代入函数中,得,因为,所以.由已知,且,得.(2)因为点是的中点,,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论