版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年天津市蓟州区高一下数学期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,若点是所在平面内一点,且,则的最大值等于().A. B. C. D.2.将边长为2的正方形沿对角线折起,则三棱锥的外接球表面积为()A. B. C. D.3.设,函数在区间上是增函数,则()A. B.C. D.4.在锐角中,角,,所对的边分别为,,,边上的高,且,则等于()A. B. C. D.5.一游客在处望见在正北方向有一塔,在北偏西方向的处有一寺庙,此游客骑车向西行后到达处,这时塔和寺庙分别在北偏东和北偏西,则塔与寺庙的距离为()A. B. C. D.6.设变量满足约束条件:,则的最小值()A. B. C. D.7.从1,2,3,…,9这个9个数中任取5个不同的数,则这5个数的中位数是5的概率等于()A.57 B.59 C.28.已知等差数列的公差为2,且是与的等比中项,则等于()A. B. C. D.9.下图来自古希腊数学家希波克拉底所研究的平面几何图形.此图由两个圆构成,O为大圆圆心,线段AB为小圆直径.△AOB的三边所围成的区域记为I,黑色月牙部分记为Ⅱ,两小月牙之和(斜线部分)部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A. B. C. D.10.如图,设A、B两点在河的两岸,一测量者在A的同侧,在所在河岸边选定一点C,测出AC的距离为502m,∠ACB=45∘,∠CAB=105A.100m B.50C.1002m二、填空题:本大题共6小题,每小题5分,共30分。11.已知,为第二象限角,则________12.已知是等差数列,,,则的前n项和______.13.在直角坐标系中,直线与直线都经过点,若,则直线的一般方程是_____.14.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得份量成等差数列,且较大的三份之和的是较小的两份之和,则最小一份的量为___.15.设向量是两个不共线的向量,若与共线,则_______.16.公比为2的等比数列的各项都是正数,且,则的值为___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.求证:(1)AC⊥BC1;(2)AC1∥平面CDB1.18.设一元二次不等式的解集为.(Ⅰ)当时,求;(Ⅱ)当时,求的取值范围.19.解下列方程(1);(2);20.如图,为方便市民游览市民中心附近的“网红桥”,现准备在河岸一侧建造一个观景台,已知射线,为两边夹角为的公路(长度均超过千米),在两条公路,上分别设立游客上下点,,从观景台到,建造两条观光线路,,测得千米,千米.(1)求线段的长度;(2)若,求两条观光线路与之和的最大值.21.关于的不等式,其中为大于0的常数。(1)若不等式的解集为,求实数的取值范围;(2)若不等式的解集为,且中恰好含有三个整数,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】以为坐标原点,建立平面直角坐标系,如图所示,则,,,即,所以,,因此,因为,所以的最大值等于,当,即时取等号.考点:1、平面向量数量积;2、基本不等式.2、C【解析】
根据题意,画出图形,结合图形得出三棱锥的外接球直径,从而求出外接球的表面积,得到答案.【详解】由题意,将边长为2的正方形沿对角线折起,得到三棱锥,如图所示,则,三棱锥的外接球直径为,即半径为,外接球的表面积为,故选C.【点睛】本题主要考查了平面图形的折叠问题,以及外接球的表面积的计算,着重考查了空间想象能力,以及推理与计算能力,属于基础题.3、C【解析】
首先比较自变量与的大小,然后利用单调性比较函数值与的大小.【详解】因为,函数在区间上是增函数,所以.故选C.【点睛】已知函数单调性比较函数值大小,可以借助自变量的大小来比较函数值的大小.4、A【解析】
在中得到,,在中得到,利用面积公式计算得到.【详解】如图所示:在中:,根据勾股定理得到在中:利用勾股定理得到,故故选A【点睛】本题考查了勾股定理,面积公式,意在考查学生解决问题的能力.5、C【解析】
先根据题干描述,画出ABCD的相对位置,再解三角形.【详解】如图先求出,的长,然后在中利用余弦定理可求解.在中,,可得.在中,,,,∴,∴.在中,,∴.故选C.【点睛】本题考查正余弦定理解决实际问题中的距离问题,正确画出其相对位置是关键,属于中档题.6、D【解析】
如图作出可行域,知可行域的顶点是A(-2,2)、B()及C(-2,-2),平移,当经过A时,的最小值为-8,故选D.7、C【解析】试题分析:设事件为“从1,2,3,…,9这9个数中5个数的中位数是5”,则基本事件总数为种,事件所包含的基本事件的总数为:,所以由古典概型的计算公式知,,故应选.考点:1.古典概型;8、A【解析】
直接利用等差数列公式和等比中项公式得到答案.【详解】是与的等比中项,故即解得:故选:A【点睛】本题考查了等差数列和等比中项,属于常考题型.9、D【解析】
设OA=1,则AB,分别求出三个区域的面积,由测度比是面积比得答案.【详解】设OA=1,则AB,,以AB中点为圆心的半圆的面积为,以O为圆心的大圆面积的四分之一为,以AB为弦的大圆的劣弧所对弓形的面积为π﹣1,黑色月牙部分的面积为π﹣(π﹣1)=1,图Ⅲ部分的面积为π﹣1.设整个图形的面积为S,则p1,p1,p3.∴p1=p1>p3,故选D.【点睛】本题考查几何概型概率的求法,考查数形结合的解题思想方法,正确求出各部分面积是关键,是中档题.10、A【解析】
计算出ΔABC三个角的值,然后利用正弦定理可计算出AB的值.【详解】在ΔABC中,AC=502m,∠ACB=45∘,由正弦定理得ABsin∠ACB=ACsin【点睛】本题考查正弦定理解三角形,要熟悉正弦定理解三角形对三角形已知元素类型的要求,考查运算求解能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先求解,再求解,再利用降幂公式求解即可.【详解】由,又为第二象限角,故,且.又.故答案为:【点睛】本题主要考查了降幂公式的用法等,属于基础题型.12、【解析】
由,可求得公差d,进而可求得本题答案.【详解】设等差数列的公差为d,由题,有,解得,所以.故答案为:【点睛】本题主要考查等差数列的通项公式及求和公式,属基础题.13、【解析】
点代入的方程求出k,再由求出直线的斜率,即可写出直线的点斜式方程.【详解】将点代入直线得,,解得,又,,于是的方程为,整理得.故答案为:【点睛】本题考查直线的方程,属于基础题.14、【解析】
设此等差数列为{an},公差为d,则(a3+a4+a5)×=a1+a2,即,解得a1=,d=.最小一份为a1,故答案为.15、【解析】试题分析:∵向量,是两个不共线的向量,不妨以,为基底,则,又∵共线,.考点:平面向量与关系向量16、2【解析】
根据等比数列的性质与基本量法求解即可.【详解】由题,因为,又等比数列的各项都是正数,故.故.故答案为:【点睛】本题主要考查了等比数列的等积性与各项之间的关系.属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)由勾股定理可证得为直角三角形即可证得,由直棱柱可知面,可证得,根据线面垂直的判定定理可证得面,从而可得.(2)设与的交点为,连结,由中位线可证得,根据线面平行的判定定理可证得平面.试题解析:证明:(1)证明:,,为直角三角形且,即.又∵三棱柱为直棱柱,面,面,,,面,面,.(2)设与的交点为,连结,是的中点,是的中点,.面,面,平面.考点:1线线垂直,线面垂直;2线面平行.18、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)将代入得到关于的不等式,结合一元二次方程解一元二次不等式可求得集合;(Ⅱ)解集为即不等式恒成立,求解时结合与之对应的二次函数考虑可得到需满足的条件解不等式求的取值范围.【详解】(Ⅰ)当时,原不等式为:解方程得.(Ⅱ)由,即不等式的解集为R,则.19、(1)或;(2);【解析】
(1)由,得,解方程即可.(2)由已知得到,解得即可.【详解】(1),,或,或.(2),,解得.【点睛】本题考查了指数型、对数型方程,考查了指数、对数的运算,属于基础题.20、(1)3;(2)1.【解析】
(1),.用余弦定理,即可求出;(2)设,,用正弦定理求出,,展开,结合辅助角公式可化为,由的取值范围,即可求解.【详解】(1)在中,由余弦定理得,,所以线段的长度为3千米.(2)设,因为,所以,在中,由正弦定理得,.所以,,因此,因为,所以.所以当,即时,取到最大值1.答:两条观光线路距离之和的最大值为1千米.【点睛】本题考查正、余弦定理解三角形,考查三角恒等变换,尤其是辅助角公式要熟练应用,属于中档题.21、(1);(2)【解析】
(1)关于的不等式的解集为,得出判别式△,且,由此求出的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度智能化打桩机械租赁服务规范协议4篇
- 2025年度特色菜品研发厨房厨师长聘用合同4篇
- 2024物流运输合同参考模板
- 2024版债权转股权协议书
- 中国猪的饲养市场前景及投资研究报告
- 2025年度二手房交易担保合同模板4篇
- 2025年度个人股权投资基金设立与运营协议4篇
- 2025年洗车店租赁及售后服务保障合同3篇
- 2025年度高端制造行业个人技术工人派遣合同2篇
- 2025年度个人房产买卖合同税收筹划协议3篇
- 肺动脉高压的护理查房课件
- 2025届北京巿通州区英语高三上期末综合测试试题含解析
- 公婆赠予儿媳妇的房产协议书(2篇)
- 煤炭行业智能化煤炭筛分与洗选方案
- 2024年机修钳工(初级)考试题库附答案
- Unit 5 同步练习人教版2024七年级英语上册
- 矽尘对神经系统的影响研究
- 分润模式合同模板
- 海南省汽车租赁合同
- 2024年长春医学高等专科学校单招职业适应性测试题库必考题
- (正式版)SHT 3046-2024 石油化工立式圆筒形钢制焊接储罐设计规范
评论
0/150
提交评论