版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年江西省赣州市十五县高一数学第二学期期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不等式x+5(x-1)A.[-3,1C.[122.已知三棱锥,若平面,,,,则三棱锥外接球的表面积为()A. B. C. D.3.如图,矩形ABCD中,AB=2,AD=1,P是对角线AC上一点,,过点P的直线分别交DA的延长线,AB,DC于点M,E,N.若(m>0,n>0),则2m+3n的最小值是()A. B.C. D.4.已知,则的垂直平分线所在直线方程为()A. B.C. D.5.经过两条直线和的交点,且垂直于直线的直线方程为()A. B. C. D.6.在正方体中为底面的中心,为的中点,则异面直线与所成角的正弦值为()A. B. C. D.7.函数的零点所在的区间为()A. B. C. D.8.已知角的顶点与原点重合,始边与轴非负半轴重合,终边过点,则()A. B. C. D.9.已知函数,下列结论错误的是()A.既不是奇函数也不是偶函数 B.在上恰有一个零点C.是周期函数 D.在上是增函数10.若函数,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.把“五进制”数转化为“十进制”数是_____________12.某球的体积与表面积的数值相等,则球的半径是13.函数的值域为______.14.如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,则x的值为_________.15.已知数列的通项公式,那么使得其前项和大于7.999的的最小值为______.16.若三边长分别为3,5,的三角形是锐角三角形,则的取值范围为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算该项目月处理成本(元)与月处理量(吨)之间的函数关系可以近似地表示为:,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为元,若该项目不获利,政府将给予补贴.(1)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?18.已知三棱柱中,平面ABC,,,M为AC中点.(1)证明:直线平面;(2)求异面直线与所成角的大小.19.如图是某神奇“黄金数学草”的生长图.第1阶段生长为竖直向上长为1米的枝干,第2阶段在枝头生长出两根新的枝干,新枝干的长度是原来的,且与旧枝成120°,第3阶段又在每个枝头各长出两根新的枝干,新枝干的长度是原来的,且与旧枝成120°,……,依次生长,直到永远.(1)求第3阶段“黄金数学草”的高度;(2)求第13阶段“黄金数学草”的高度;20.如图,在平面直角坐标系中,点,,锐角的终边与单位圆O交于点P.(Ⅰ)当时,求的值;(Ⅱ)在轴上是否存在定点M,使得恒成立?若存在,求出点M坐标;若不存在,说明理由.21.如图,已知函数,点分别是的图像与轴、轴的交点,分别是的图像上横坐标为的两点,轴,共线.(1)求的值;(2)若关于的方程在区间上恰有唯一实根,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】试题分析:x+5(x-1)2≥2⇔x+5≥2(x-1)2且x≠1考点:分式不等式解法2、B【解析】
根据题意画出三棱锥的图形,将其放入一个长方体中,容易知道三棱锥的外接球半径,利用球的表面积公式求解即可.【详解】根据题意画出三棱锥如图所示,把三棱锥放入一个长方体中,三棱锥的外接球即这个长方体的外接球,长方体的外接球半径等于体对角线的一半,所以三棱锥的外接球半径,三棱锥的外接球的表面积.故选:B【点睛】本题主要考查三棱锥的外接球问题,对于三棱锥三条棱有两两垂直的情况,可以考虑将其放入一个长方体中求解外接球半径,属于基础题.3、C【解析】设,则又当且仅当时取等号,故选点睛:在利用基本不等式求最值的时候,要特别注意“拆,拼,凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数),“定”(不等式的另一边必须为定值),“等”(等号取得的条件)的条件才能应用,否则会出现错误.4、A【解析】
首先根据题中所给的两个点的坐标,应用中点坐标公式求得线段的中点坐标,利用两点斜率坐标公式求得,利用两直线垂直时斜率的关系,求得其垂直平分线的斜率,利用点斜式写出直线的方程,化简求得结果.【详解】因为,所以其中点坐标是,又,所以的垂直平分线所在直线方程为,即,故选A.【点睛】该题考查的是有关线段的垂直平分线的方程的问题,在解题的过程中,需要明确线段的垂直平分线的关键点一是垂直,二是平分,利用相关公式求得结果.5、D【解析】
首先求出两条直线的交点坐标,再根据垂直求出斜率,点斜式写方程即可.【详解】有题知:,解得:,交点.直线的斜率为,所求直线斜率为.所求直线为:,即.故选:D【点睛】本题主要考查如何求两条直线的交点坐标,同时考查了两条直线的位置关系,属于简单题.6、B【解析】
取BC中点为M,连接OM,EM找出异面直线夹角为,在三角形中利用边角关系得到答案.【详解】取BC中点为M,连接OM,EM在正方体中为底面的中心,为的中点易知:异面直线与所成角为设正方体边长为2,在中:故答案选B【点睛】本题考查了立体几何里异面直线的夹角,通过平行找到对应的角是解题的关键.7、C【解析】
分别将选项中的区间端点值代回,利用零点存在性定理判断即可【详解】由题函数单调递增,,,则,故选:C【点睛】本题考查利用零点存在性定理判断零点所在区间,属于基础题8、C【解析】
利用三角函数定义即可求得:,,再利用余弦的二倍角公式得解.【详解】因为角的终边过点,所以点到原点的距离所以,所以故选C【点睛】本题主要考查了三角函数定义及余弦的二倍角公式,考查计算能力,属于较易题.9、B【解析】
将函数利用同角三角函数的基本关系,化成,再对选项进行一一验证,即可得答案.【详解】∵,对A,∵,∴既不是奇函数也不是偶函数,故A命题正确;对B,令,解关于的一元二次方程得:,∵,∴方程存在两个根,∴在上有两个零点,故B错误;对C,显然是函数的一个周期,故C正确;对D,令,则,∵在单调递减,且,又∵在单调递减,∴在上是增函数,故D正确;故选:B【点睛】本题考查复合函数的单调性、奇偶性、周期性、零点,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意复合函数周增异减原则.10、D【解析】
根据分段函数的定义域与函数解析式的关系,代值进行计算即可.【详解】解:由已知,又,又,所以:.
故选:D.【点睛】本题考查了分段函数的函数值计算问题,抓住定义域的范围,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、194【解析】由.故答案为:194.12、3【解析】试题分析:,解得.考点:球的体积和表面积13、【解析】
由反三角函数的性质得到,即可求得函数的值域.【详解】由,则,,又,,即,函数的值域为.故答案:.【点睛】本题考查反三角函数的性质及其应用,属于基础题.14、【解析】
根据茎叶图中数据和中位数的定义可构造方程求得.【详解】甲组数据的中位数为,解得:故答案为:【点睛】本题考查茎叶图中中位数相关问题的求解,属于基础题.15、1【解析】
直接利用数列的通项公式,建立不等式,解不等式求出结果.【详解】解:数列的通项公式,则:,所以:当时,即:,当时,成立,即:的最小值为1.故答案为:1【点睛】本题考查的知识要点:数列的通项公式的求法及应用,主要考查学生的运算能力和转化能力,属于基础题型.16、【解析】
由三边长分别为3,5,的三角形是锐角三角形,若5是最大边,则,解得范围,若是最大边,则,解得范围,即可得出.【详解】解:由三边长分别为3,5,的三角形是锐角三角形,若5是最大边,则,解得.若是最大边,则,解得.综上可得:的取值范围为.故答案为:.【点睛】本题考查了不等式的性质与解法、余弦定理、分类讨论方法,考查了推理能力与计算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)不能获利,政府每月至少补贴元;(2)每月处理量为吨时,平均成本最低.【解析】
(1)利用:(生物的柴油总价值)(对应段的月处理成本)利润,根据利润的正负以及大小来判断是否需要补贴,以及补贴多少;(2)考虑:(月处理成本)(月处理量)每吨的平均处理成本,即为,计算的最小值,注意分段.【详解】(1)当时,该项目获利为,则∴当时,,因此,该项目不会获利当时,取得最大值,所以政府每月至少需要补贴元才能使该项目不亏损;(2)由题意可知,生活垃圾每吨的平均处理成本为:当时,所以当时,取得最小值;当时,当且仅当,即时,取得最小值因为,所以当每月处理量为吨时,才能使每吨的平均处理成本最低.【点睛】本题考查分段函数模型的实际运用,难度一般.(1)实际问题在求解的时候注意定义域问题;(2)利用基本不等式求解最值的时候,注意说明取等号的条件.18、(1)证明见解析(2)【解析】
(1)连接交于点O,再证明,得证;(2)先求,可得.再结合即可得解.【详解】证明:(1)连接交于点O,连接OM,为平行四边形,为的中点,又M为AC的中点,.又平面,平面.平面.(2)平面ABC,,.又,由M为AC中点,,,又O为的中点,.,.所以异面直线与所成角的大小为.【点睛】本题考查了线面平行的判定定理,重点考查了异面直线所成角的求法,属基础题.19、(1)(2)【解析】
(1)根据示意图,计算出第阶段、第阶段生长的高度,即可求解出第阶段“黄金数学草”的高度;(2)考虑第偶数阶段、第奇数阶段“黄金数学草”高度的生长量之间的关系,构造数列,利用数列求和完成第阶段“黄金数学草”的高度的计算.【详解】(1)因为第一阶段:,所以第阶段生长:,第阶段的生长:,所以第阶段“黄金数学草”的高度为:;(2)设第个阶段生长的“黄金数学草”的高度为,则第个阶段生长的“黄金数学草”的高度为,第阶段“黄金数学草”的高度为,所以,所以数列按奇偶性分别成公比为等比数列,所以.所以第阶段“黄金数学草”的高度为:.【点睛】本题考查等比数列以及等比数列的前项和的实际应用,难度较难.处理数列的实际背景问题,第一步要能从实际背景中分离出数列的模型,然后根据给定的条件处理对应的数列计算问题,这对分析问题的能力要求很高.20、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)设点,求得向量的坐标,根据向量的数量积的运算,求得,即可求得答案.(Ⅱ)设M点的坐标为,把恒成立问题转化为恒成立,列出方程组,即可求解.【详解】(Ⅰ),,(Ⅱ)设M点的坐标为,则,,,.【点睛】本题主要考查了向量的坐标运算,以及向量的数量积的应用和恒成立问题的求解,其
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年国有企业保密与竞业禁止合同
- 2024年度玻璃钢容器设计与制造合同
- 2024年式股权抵押投资合同
- 鲁泰纺织协同效应
- 2024年度建筑项目居间合作合同
- 2024年度信息安全审计与合规检查合同
- 2024年度影视作品改编权转让合同
- 工程设计与物联网安全
- 2024年度数据中心租赁合同
- 风险因子分析
- 音乐治疗导论智慧树知到答案2024年湖南科技大学
- 汽车行业新能源汽车动力系统技术创新方案
- 2024至2030年中国双碳产业园(零碳园区)规划建设与投资战略分析报告
- 葛根培训课件
- 跨平台游戏互操作性和可移植性
- 网课智慧树知道《文书学(四川大学)》章节测试答案
- 在线网课知道知慧《灾害学(山东科大)》单元测试答案
- 2024年宁波市奉化区文化旅游集团有限公司招聘笔试冲刺题(带答案解析)
- 统编版教材一至六年级日积月累
- 口腔科医疗污水处置登记表
- 习近平总书记教育重要论述讲义智慧树知到期末考试答案章节答案2024年西南大学
评论
0/150
提交评论