2024届内蒙古巴彦淖尔第一中学高一数学第二学期期末经典模拟试题含解析_第1页
2024届内蒙古巴彦淖尔第一中学高一数学第二学期期末经典模拟试题含解析_第2页
2024届内蒙古巴彦淖尔第一中学高一数学第二学期期末经典模拟试题含解析_第3页
2024届内蒙古巴彦淖尔第一中学高一数学第二学期期末经典模拟试题含解析_第4页
2024届内蒙古巴彦淖尔第一中学高一数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届内蒙古巴彦淖尔第一中学高一数学第二学期期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列满足,,则()A.4 B.-4 C.8 D.-82.,则的大小关系是()A.B.C.D.3.如果,并且,那么下列不等式中不一定成立的是()A. B. C. D.4.已知,,当时,不等式恒成立,则的取值范围是A. B. C. D.5.已知点,点,点在圆上,则使得为直角三角形的点的个数为()A. B. C. D.6.已知在等差数列中,的等差中项为,的等差中项为,则数列的通项公式()A. B.-1 C.+1 D.-37.已知锐角三角形的边长分别为1,3,,则的取值范围是()A. B. C. D.8.连续抛掷一枚质地均匀的硬币10次,若前4次出现正面朝上,则第5次出现正面朝上的概率是()A. B. C. D.9.已知一个等比数列项数是偶数,其偶数项之和是奇数项之和的3倍,则这个数列的公比为()A.2 B.3 C.4 D.610.已知,且,则()A. B. C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.若过点作圆的切线,则直线的方程为_______________.12.据两个变量、之间的观测数据画成散点图如图,这两个变量是否具有线性相关关系_____(答是与否).13.下列结论中正确的是______.(1)将图像向左平移个单位,再将所有点的横坐标扩大为原来的倍,得到的图像;(2)将图像上所有点的横坐标扩大为原来的倍,再将图像向左平移个单位,得到的图像;(3)将图像上所有点的横坐标扩大为原来的倍,再将图像向左平移个单位,得到的图像;(4)将图像上所有点的横坐标变为原来的倍,再将图像向左平移个单位,得到的图像;(5)将图像向左平移个单位,再将所有点的横坐标扩大为原来的倍,得到的图像;14.已知一组数据、、、、、,那么这组数据的平均数为__________.15.在等比数列中,,,则________.16.若向量与的夹角为,与的夹角为,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列满足.(1)求的通项公式;(2)设等比数列满足,求的前项和.18.在中,(Ⅰ)求;(Ⅱ)若,,求的值19.己知,,若.(Ⅰ)求的最大值和对称轴;(Ⅱ)讨论在上的单调性.20.已知的顶点,AB边上的中线CM所在直线方程为,AC边上的高BH所在直线方程为.(1)求C点坐标;(2)求直线BC的方程.21.如图所示,是正三角形,和都垂直于平面,且,,是的中点,求证:(1)平面;(2).

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据递推公式,逐步计算,即可求出结果.【详解】因为数列满足,,所以,,.故选C【点睛】本题主要考查由递推公式求数列中的项,逐步代入即可,属于基础题型.2、D【解析】由题意得,,故选D.【点睛】本题考查函数的三角恒等变换和三角函数的图像与性质,涉及函数与不等式思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,具有一定的综合性,属于中档题型.首先利用诱导公式和两角和差公式将化简,再利用正弦的函数图像可得正解.3、D【解析】

不等式两边乘(或除以)同一个负数,不等号的方向改变,可判定A的真假;a>b,-1>-2,根据同向不等式可以相加,可判定B的真假;根据a-b>0则b-a<0,进行判定C的真假;a的符号不确定,从而选项D不一定成立,从而得到结论.【详解】∵a,b∈R,并且a>b,∴−a<−b,故A一定正确;a>b,−1>−2,根据同向不等式可以相加得,a−1>b−2,故B一定正确;a−b>0则b−a<0,所以a−b>b−a,故C一定正确;不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,而a的符号不确定,故D不一定正确.故选D.【点睛】本题主要考查利用不等式的性质判断不等关系,属于基础题.4、B【解析】

根据为定值,那么乘以后值不变,由基本不等式可消去x,y后,对得到的不等式因式分解,即可解得m的值.【详解】因为,,,所以.因为不等式恒成立,所以,整理得,解得,即.【点睛】本题考查基本不等式,由为定值和已知不等式相乘来构造基本不等式,最后含有根式的因式分解也是解题关键.5、D【解析】

分、、是直角三种情况讨论,求出点的轨迹,将问题转化为点的轨迹图形与圆的公共点个数问题,即可得出正确选项.【详解】①若为直角,则,设点,,,则,即,此时,点的轨迹是以点为圆心,以为半径的圆,圆与圆的圆心距为,,则圆与圆的相交,两圆的公共点个数为;②若为直角,由于直线的斜率为,则直线的斜率为,直线的方程为,即,圆的圆心到直线的距离为,则直线与圆相交,直线与圆有个公共点;③若为直角,则直线的方程为,圆的圆心到直线的距离为,直线与圆相离,直线与圆没有公共点.综上所述,使得为直角三角形的点的个数为.故选:D.【点睛】本题考查符合条件的直角三角形的顶点个数,解题的关键在于将问题转化为直线与圆、圆与圆的公共点个数之和的问题,同时也考查了轨迹方程的求解,考查化归与转化思想以及分类讨论思想的应用,属于难题.6、D【解析】试题分析:由于数列是等差数列,所以的等差中项是,故有,又有的等差中项是,所以,从而等差数列的公差,因此其通项公式为,故选D.考点:等差数列.7、B【解析】

根据大边对大角定理知边长为所对的角不是最大角,只需对其他两条边所对的利用余弦定理,即这两角的余弦值为正,可求出的取值范围.【详解】由题意知,边长为所对的角不是最大角,则边长为或所对的角为最大角,只需这两个角为锐角即可,则这两个角的余弦值为正数,于此得到,由于,解得,故选C.【点睛】本题考查余弦定理的应用,在考查三角形是锐角三角形、直角三角形还是钝角三角形,一般由最大角来决定,并利用余弦定理结合余弦值的符号来进行转化,其关系如下:为锐角;为直角;为钝角.8、D【解析】

抛掷一枚质地均匀的硬币有两种情况,正面朝上和反面朝上的概率都是,与拋掷次数无关.【详解】解:抛掷一枚质地均匀的硬币,有正面朝上和反面朝上两种可能,概率均为,与拋掷次数无关.故选:D.【点睛】本题考查了概率的求法,考查了等可能事件及等可能事件的概率知识,属基础题.9、B【解析】

由数列为等比数列,则,结合题意即可得解.【详解】解:因为数列为等比数列,设等比数列的公比为,则,又是奇数项之和的3倍,则,故选:B.【点睛】本题考查了等比数列的性质,重点考查了等比数列公比的运算,属基础题.10、A【解析】

由平方关系得出的值,最后由商数关系求解即可.【详解】,故选:A【点睛】本题主要考查了利用平方关系以及商数关系化简求值,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】

讨论斜率不存在时是否有切线,当斜率存在时,运用点到直线距离等于半径求出斜率【详解】圆即①当斜率不存在时,为圆的切线②当斜率存在时,设切线方程为即,解得此时切线方程为,即综上所述,则直线的方程为或【点睛】本题主要考查了过圆外一点求切线方程,在求解过程中先讨论斜率不存在的情况,然后讨论斜率存在的情况,利用点到直线距离公式求出结果,较为基础。12、否【解析】

根据散点图的分布来判断出两个变量是否具有线性相关关系.【详解】由散点图可知,散点图分布无任何规律,不在一条直线附近,所以,这两个变量没有线性相关关系,故答案为否.【点睛】本题考查利用散点图判断两变量之间的线性相关关系,考查对散点图概念的理解,属于基础题.13、(1)(3)【解析】

根据三角函数图像伸缩变换与平移变换的原则,逐项判断,即可得出结果.【详解】(1)将图像向左平移个单位,得到的图像,再将所有点的横坐标扩大为原来的倍,得到的图像;(1)正确;(2)将图像上所有点的横坐标扩大为原来的倍,得到的图像,再将图像向左平移个单位,得到的图像;(2)错;(3)将图像上所有点的横坐标扩大为原来的倍,得到的图像,再将图像向左平移个单位,得到的图像;(3)正确;(4)将图像上所有点的横坐标变为原来的倍,得到的图像,再将图像向左平移个单位,得到的图像;(4)错;(5)将图像向左平移个单位,得到的图像,再将所有点的横坐标扩大为原来的倍,得到的图像;(5)错;故答案为(1)(3)【点睛】本题主要考查三角函数的图像变换,熟记图像变换原则即可,属于常考题型.14、【解析】

利用平均数公式可求得结果.【详解】由题意可知,数据、、、、、的平均数为.故答案为:.【点睛】本题考查平均数的计算,考查平均数公式的应用,考查计算能力,属于基础题.15、【解析】

根据等比数列中,,得到公比,再写出和,从而得到.【详解】因为为等比数列,,,所以,所以,,所以.故答案为:.【点睛】本题考查等比数列通项公式中的基本量计算,属于简单题.16、【解析】

根据向量平行四边形法则作出图形,然后在三角形中利用正弦定理分析.【详解】如图所示,,,所以在中有:,则,故.【点睛】本题考查向量的平行四边形法则的运用,难度一般.在运用平行四边形法则时候,可以适当将其拆分为三角形,利用解三角形中的一些方法去解决问题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)根据基本元的思想,将已知条件转化为的形式,列方程组,解方程组可求得的值.并由此求得数列的通项公式.(2)利用(1)的结论求得的值,根据基本元的思想,,将其转化为的形式,由此求得的值,根据等比数列前项和公式求得数列的前项和.【详解】解:(1)设的公差为,则由得,故的通项公式,即.(2)由(1)得.设的公比为,则,从而,故的前项和.【点睛】本小题主要考查利用基本元的思想解有关等差数列和等比数列的问题,属于基础题.18、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)由正弦定理、二倍角公式,结合可将已知边角关系式化简为,从而求得,根据可求得;(Ⅱ)由三角形面积公式可求得;利用余弦定理可构造方程求得结果.【详解】(Ⅰ)由正弦定理得:,即(Ⅱ)由得:由余弦定理得:【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理和三角形面积公式的应用,属于常考题型.19、(1);,(2)在上单调递增,在上单调减.【解析】

(1)先由题意得到,再化简整理,结合三角函数的性质,即可求出结果;(2)根据三角函数的单调性,结合题中条件,即可求出结果.【详解】(1)所以最大值为,由,,所以对称轴,(2)当时,,从而当,即时,单调递增当,即时,单调递减综上可知在上单调递增,在上单调减.【点睛】本题主要考查三角函数,熟记三角函数的性质即可,属于常考题型.20、(1);(2)【解析】

(1)根据点斜式求出AC边所在的直线方程,再由CM所在直线方程,两方程联立即可求解.(2)设,根据题意可得,,两式联立解得的值,再根据两点式即可得到直线BC的方程.【详解】(1)AC边上的高BH所在直线方程为,且,AC边所在的直线方程为,由AB边上的中线CM所在直线方程为,,解得,故C点坐标为.(2)设,则由AC边上的高BH所在直线方程为,可得,AB边上的中线CM所在直线方程为,,,解得,故点的坐标为,则直线BC的方程为,即.【点睛】本题考查了点斜式方程、两点式方程,同时考查了解二元一次方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论