内蒙古自治区额尔古纳市三中2023-2024学年中考考前最后一卷数学试卷含解析_第1页
内蒙古自治区额尔古纳市三中2023-2024学年中考考前最后一卷数学试卷含解析_第2页
内蒙古自治区额尔古纳市三中2023-2024学年中考考前最后一卷数学试卷含解析_第3页
内蒙古自治区额尔古纳市三中2023-2024学年中考考前最后一卷数学试卷含解析_第4页
内蒙古自治区额尔古纳市三中2023-2024学年中考考前最后一卷数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古自治区额尔古纳市三中2023-2024学年中考考前最后一卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=与一次函数y=bx﹣c在同一坐标系内的图象大致是()A. B. C. D.2.如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是()A.主视图是中心对称图形B.左视图是中心对称图形C.主视图既是中心对称图形又是轴对称图形D.俯视图既是中心对称图形又是轴对称图形3.下列因式分解正确的是()A. B.C. D.4.观察图中的“品”字形中个数之间的规律,根据观察到的规律得出a的值为A.75 B.89 C.103 D.1395.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330C.(1﹣10%)2x=330 D.(1+10%)x=3306.北京故宫的占地面积达到720000平方米,这个数据用科学记数法表示为()A.0.72×106平方米 B.7.2×106平方米C.72×104平方米 D.7.2×105平方米7.等式成立的x的取值范围在数轴上可表示为(

)A. B. C. D.8.一个多边形内角和是外角和的2倍,它是()A.五边形 B.六边形 C.七边形 D.八边形9.如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是()A. B. C. D.10.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且−2≤x≤1时,y的最大值为9,则a的值为A.1或−2B.−2或2C.2D.1二、填空题(共7小题,每小题3分,满分21分)11.________.12.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为_______.13.出售某种手工艺品,若每个获利x元,一天可售出个,则当x=_________元,一天出售该种手工艺品的总利润y最大.14.如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_米.(结果精确到0.1米,参考数据:2≈1.41,3≈1.73)15.如图,已知一次函数y=ax+b和反比例函数的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为__________16.一个正四边形的内切圆半径与外接圆半径之比为:_________________17.=_____.三、解答题(共7小题,满分69分)18.(10分)先化简,然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.19.(5分)解分式方程:x+1x-1-20.(8分)计算:()-1+()0+-2cos30°.21.(10分)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:1.(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈,tan63.4°≈2)22.(10分)如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点E.(1)求证:DE⊥AC;(2)连结OC交DE于点F,若,求的值.23.(12分)如图1,在等边三角形中,为中线,点在线段上运动,将线段绕点顺时针旋转,使得点的对应点落在射线上,连接,设(且).(1)当时,①在图1中依题意画出图形,并求(用含的式子表示);②探究线段,,之间的数量关系,并加以证明;(2)当时,直接写出线段,,之间的数量关系.24.(14分)如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【详解】解:观察二次函数图象可知:开口向上,a>1;对称轴大于1,>1,b<1;二次函数图象与y轴交点在y轴的正半轴,c>1.∵反比例函数中k=﹣a<1,∴反比例函数图象在第二、四象限内;∵一次函数y=bx﹣c中,b<1,﹣c<1,∴一次函数图象经过第二、三、四象限.故选C.【点睛】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a、b、c的正负.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.2、D【解析】

先得到圆锥的三视图,再根据中心对称图形和轴对称图形的定义求解即可.【详解】解:A、主视图不是中心对称图形,故A错误;

B、左视图不是中心对称图形,故B错误;

C、主视图不是中心对称图形,是轴对称图形,故C错误;

D、俯视图既是中心对称图形又是轴对称图形,故D正确.

故选:D.【点睛】本题考查简单几何体的三视图,中心对称图形和轴对称图形,熟练掌握各自的定义是解题关键.3、C【解析】

依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D选项中,多项式x2-x+2在实数范围内不能因式分解;

选项B,A中的等式不成立;

选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确.

故选C.【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.4、A【解析】观察可得,上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,所以b=26=64,又因上边的数与左边的数的和正好等于右边的数,所以a=11+64=75,故选B.5、D【解析】解:设上个月卖出x双,根据题意得:(1+10%)x=1.故选D.6、D【解析】试题分析:把一个数记成a×10n(1≤a<10,n整数位数少1)的形式,叫做科学记数法.∴此题可记为1.2×105平方米.考点:科学记数法7、B【解析】

根据二次根式有意义的条件即可求出的范围.【详解】由题意可知:,解得:,故选:.【点睛】考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.8、B【解析】

多边形的外角和是310°,则内角和是2×310=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.【详解】设这个多边形是n边形,根据题意得:(n﹣2)×180°=2×310°解得:n=1.故选B.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.9、C【解析】

根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD,进而即可证出△ABP∽△PCD,根据相似三角形的性质即可得出y=-x2+x,对照四个选项即可得出.【详解】∵△ABC为等边三角形,

∴∠B=∠C=60°,BC=AB=a,PC=a-x.

∵∠APD=60°,∠B=60°,

∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,

∴∠BAP=∠CPD,

∴△ABP∽△PCD,∴,即,∴y=-x2+x.故选C.【点睛】考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-x2+x是解题的关键.10、D【解析】

先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由-2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【详解】∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=-2a2a∵当x≥2时,y随x的增大而增大,∴a>0,∵-2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a-6=0,∴a=1,或a=-2(不合题意舍去).故选D.【点睛】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-b2a,4ac-b24a),对称轴直线x=-b2a,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-b2a时,y随x的增大而减小;x>-b2a时,y随x的增大而增大;x=-b2a时,y取得最小值4ac-b24a二、填空题(共7小题,每小题3分,满分21分)11、1【解析】

先将二次根式化为最简,然后再进行二次根式的乘法运算即可.【详解】解:原式=2×=1.故答案为1.【点睛】本题考查了二次根式的乘法运算,属于基础题,掌握运算法则是关键.12、64°【解析】解:∵∠A=52°,∴∠ABC+∠ACB=128°.∵BD和CE是△ABC的两条角平分线,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=64°.故答案为64°.点睛:本题考查的是三角形内角和定理、角平分线的定义,掌握三角形内角和等于180°是解题的关键.13、1【解析】先根据题意得出总利润y与x的函数关系式,再根据二次函数的最值问题进行解答.解:∵出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,

∴y=(8-x)x,即y=-x2+8x,

∴当x=-=1时,y取得最大值.

故答案为:1.14、2.9【解析】试题分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.考点:解直角三角形.15、﹣2<x<0或x>1【解析】

根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【详解】观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<的解集是﹣2<x<0或x>1.【点睛】本题主要考查一次函数图象与反比例函数图象,数形结合思想是关键.16、2【解析】

如图,正方形ABCD为⊙O的内接四边形,作OH⊥AB于H,利用正方形的性质得到OH为正方形ABCD的内切圆的半径,∠OAB=45°,然后利用等腰直角三角形的性质得OA=2OH即可解答.【详解】解:如图,正方形ABCD为⊙O的内接四边形,作OH⊥AB于H,则OH为正方形ABCD的内切圆的半径,∵∠OAB=45°,∴OA=2OH,∴OHOA即一个正四边形的内切圆半径与外接圆半径之比为22故答案为:22【点睛】本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.理解正多边形的有关概念.17、1【解析】分析:第一项根据非零数的零次幂等于1计算,第二项根据算术平方根的意义化简,第三项根据负整数指数幂等于这个数的正整数指数幂的倒数计算.详解:原式=1+2﹣2=1.故答案为:1.点睛:本题考查了实数的运算,熟练掌握零指数幂、算术平方根的意义,负整数指数幂的运算法则是解答本题的关键.三、解答题(共7小题,满分69分)18、【解析】

根据分式的减法和除法可以化简题目中的式子,然后从﹣<x<的范围内选取一个使得原分式有意义的整数作为x的值代入即可解答本题.【详解】解:÷(﹣x+1)====,当x=﹣2时,原式=.【点睛】本题考查分式的化简求值、估算无理数的大小,解答本题的关键是明确分式化简求值的方法.19、方程无解【解析】

找出分式方程的最简公分母,去分母后转化为整式方程,求出整式方程的解得到x的值,再代入最简公分母进行检验即可.【详解】解:方程的两边同乘(x+1)(x−1),得:x+12x2x2∴此方程无解【点睛】本题主要考查了解分式方程,解分式方程的步骤:①去分母;②解整式方程;③验根.20、4+2.【解析】

原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.【详解】原式=3+1+3-2×=4+2.21、(1)此人所在P的铅直高度约为14.3米;(2)从P到点B的路程约为17.1米【解析】分析:(1)过P作PF⊥BD于F,作PE⊥AB于E,设PF=5x,在Rt△ABC中求出AB,用含x的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的长.详解:过P作PF⊥BD于F,作PE⊥AB于E,∵斜坡的坡度i=5:1,设PF=5x,CF=1x,∵四边形BFPE为矩形,∴BF=PEPF=BE.在RT△ABC中,BC=90,tan∠ACB=,∴AB=tan63.4°×BC≈2×90=180,∴AE=AB-BE=AB-PF=180-5x,EP=BC+CF≈90+10x.在RT△AEP中,tan∠APE=,∴x=,∴PF=5x=.答:此人所在P的铅直高度约为14.3米.由(1)得CP=13x,∴CP=13×37.1,BC+CP=90+37.1=17.1.答:从P到点B的路程约为17.1米.点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长.22、(1)证明见解析(2)【解析】

(1)连接OD,根据三角形的中位线定理可求出OD∥AC,根据切线的性质可证明DE⊥OD,进而得证.(2)连接AD,根据等腰三角形的性质及三角函数的定义用OB表示出OF、CF的长,根据三角函数的定义求解.【详解】解:(1)连接OD.∵DE是⊙O的切线,∴DE⊥OD,即∠ODE=90°.∵AB是⊙O的直径,∴O是AB的中点.又∵D是BC的中点,.∴OD∥AC.∴∠DEC=∠ODE=90°.∴DE⊥AC.(2)连接AD.∵OD∥AC,∴.∵AB为⊙O的直径,∴∠ADB=∠ADC=90°.又∵D为BC的中点,∴AB=AC.∵sin∠ABC==,设AD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论