




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年高考数学总复习高中数学易错点+高频做题法
1.一个重要绝对不等式
l|a|-|b||<|a±b|<|a|+|b|
2.关于解决证明含In的不等式的一种思路
举例说明:证明1+1/2+1/3+…+l/n>ln(n+l)
把左边看成是1/n求和,右边看成是Sno
解:令an=l/n,令Sn=ln(n+1),则bn=ln(n+l)-lnn,
那么只需证an>bn即可,根据定积分知识画出y=l/x的图。
an=lxl/n=矩形面积〉曲线下面积=bn。当然前面要证明l>ln2o
注:仅供有能力的童鞋参考!!另外对于这种方法可以推广,就是把左边、右
边看成是数列求和,证面积大小即可。说明:前提是含In。
3.简洁公式
向量a在向量b上的射影是:(向量ax向量b的数量积)/[向量b的模]。
记忆方法:在哪投影除以哪个的模
4.说明一个易错点
若f(x+a)[a任意]为奇函数,那么得到的结论是f(x+a)=-f(-x+a)(等式右边
不是-f(-x-a))
同理如果f(x+a)为偶函数,可得f(x+a)=f(-x+a)牢记
5.离心率公式
e=sinA/(sinM+sinN)
注:P为椭圆上一点,其中A为角F1PF2,两腰角为M,N
6.椭圆的参数方程也是一个很好的东西,它可以解决一些最值问
题。
比如x2/4+y2=l求z=x+y的最值。
解:令x=2cosay=sina再利用三角有界即可。比你去=0不知道快多少倍!
7.仅供有能力的童鞋参考的公式
1.和差化积
sin0+sin(p=2sin[(0+(p)/2]cos[(0-(p)/2]sin9-sin(p=2cos[(0+(p)/2]sin[(0-
(p)/2]cos0+cos(p=2cos[(0+(p)/2]cos[(0-(p)/2]cos0-cos(p=-2sin[(0+(p)/2]sin[(9-
9)/2]
2.积化和差
sinasinp=[cos(a-p)-cos(a+p)]/2cosacosp=[cos(a+p)+cos(a-
P)]/2sinacosP=[sin(a+P)+sin(a-P)]/2cosasinP=[sin(a+P)-sin(a-P)]/2
8.定理
直观图的面积是原图的42/4倍。
9.三角形垂心定理
(1)向量011=向量0A+向量0B+向量0C(0为三角形外心,H为垂心)
(2)若三角形的三个顶点都在函数y=l/x的图象上,则它的垂心也在这个函
数图象上。
10.维维安尼定理
正三角形内(或边界上)任一点到三边的距离之和为定值,这定值等于该三角
形的高。
11.思路
如果出现两根之积xlx2=m,两根之和xl+x2=n
我们应当形成一种思路,那就是返回去构造一个二次函数
再利用△大于等于0,可以得到m、n范围。
12.常用结论
过(2p,0)的直线交抛物线y2=2px于A、B两点。
0为原点,连接AO.BO。必有角AOB=90度
13.公式
ln(x+1)gx(x>-1)该式能有效解决不等式的证明问题。
举例说明:ln(1/(22)+1)+ln(1/(32)+1)+...+ln(1/(n2)+1)<1(n>2)
证明如下:令x=l/(n2),根据ln(x+l)Wx有左右累和右边
再放缩得:左和证毕!
14.函数y=(sinx)/x是偶函数
在(0,派)上它单调递减,(-派,0)上单调递增。
利用上述性质可以比较大小。
15.函数
y=(lnx)/x在(0,e)上单调递增,在(e,+无穷)上单调递减。
另外y=x2(l/x)与该函数的单调性一致。
16.几个数学易错点
(l)F(x)<0是函数在定义域内单调递减的充分不必要条件
(2)研究函数奇偶性时,忽略最开始的也是最重要的一步:考虑定义域是否
关于原点对称
(3)不等式的运用过程中,千万要考虑“=”号是否取到
(4)研究数列问题不考虑分项,就是说有时第一项并不符合通项公式,所以
应当极度注意:数列问题一定要考虑是否需要分项!
17.提高计算能力五步曲
(1)扔掉计算器
(2)仔细审题(提倡看题慢,解题快),要知道没有看清楚题目,你算多少都
没用
(3)熟记常用数据,掌握一些速算技
(4)加强心算、估算能力
⑸检验
18.一个公式
已知三角形中AB=a,AC=b,O为三角形的外心,
则向量AOx向量BC(即数量积)=(1/2)出2T2]
证明:过O作BC垂线,转化到已知边上
19.函数
①函数单调性的含义:大多数同学都知道若函数在区间D上单调,则函数
值随着自变量的增大(减小)而增大(减小),但有些意思可能有些人还不是很
清楚,若函数在D上单调,则函数必连续(分段函数另当别论)这也说明了
为什么不能说y=tanx在定义域内单调递增,因为它的图像被无穷多条渐近
线挡住,换而言之,不连续.还有,如果函数在D上单调,则函数在D上y
与x一一对应.这个可以用来解一些方程.至于例子不举了
②函数周期性:这里主要总结一些函数方程式所要表达的周期设f(x)为R
上的函数,对任意xeR
(l)f(a±x)=f(b±x)T=(b-a)(加绝对值,下同)
(2)f(a±x)=-f(b±x)T=2(b-a)
(3)f(x-a)+f(x+a)=f(x)T=6a
(4)设今0,有f(x+T)=M[f(x)]其中M(x)满足M[M(x)]=x,且M(x)#x则函数
的周期为2
20.奇偶函数概念的推广
(1)对于函数f(x),若存在常数a,使得f(a-x)=f(a+x),则称f(x)为广义(I)
型偶函数,且当有两个相异实数a,b满足时,f(x)为周期函数T=2(b-a)
(2)若f(a-x)=-f(a+x),则f(x)是广义(I)型奇函数,当有两个相异实数a,b
满足时,f(x)为周期函数T=2(b-a)
(3)有两个实数a,b满足广义奇偶函数的方程式时,就称f(x)是广义(II)型
的奇,偶函数.且若f(x)是广义(II)型偶函数,那么当f在[a+b/2,oo)上为增
函数时,有f(xl)<f(x2)等价于绝对值xl-(a+bp=""<=""2)(绝对值x2-
(a+b)="">
21.函数对称性
⑴若f(x)满足f(a+x)+f(b-x)=c则函数关于(a+b/2,c⑵成中心对称
⑵若f(x)满足f(a+x)=f(b-x)则函数关于直线x=a+b/2成轴对称
柯西函数方程:若f(x)连续或单调
⑴若f(xy)=f(x)+f(y)(x>0,y>0),则f(x)=logax
⑵若f(xy)=f(x)f(y)(x>0,y>0),则f(x)=x2u(u由初值给出)
⑶f(x+y)=f(x)f(y)贝ijf(x)=a2x
(4)若f(x+y)=f(x)+f(y)+kxy,贝Uf(x)=ax2+bx(5)若f(x+y)+f(x-y)=2f(x),则
f(x)=ax+b特别的若f(x)+f(y)=f(x+y),则f(x)=kx
22.与三角形有关的定理或结论中学数学平面几何最基本的图形就
是三角形
①正切定理(我自己取的,因为不知道名字):在非Rt△中,有
tanA+tanB+tanC=tanAtanBtanC
②任意三角形射影定理(又称第一余弦定理):
在AABC中,
a=bcosC+ccosB;b=ccosA+acosC;c=acosB+bcosA
③任意三角形内切圆半径r=2S/a+b+c(S为面积),外接圆半径应该都知道
了吧
④梅涅劳斯定理:设A1,B1,Cl分别是AABC三边BC,CA,AB所在直
线的上的点,则Al,Bl,C1共线的充要条件是
CB1/B1ABA1/A1CAC1/C1B=1
23.易错点1
(1)函数的各类性质综合运用不灵活,比如奇偶性与单调性常用来配合解决
抽象函数不等式问题;
(2)三角函数恒等变换不清楚,诱导公式不迅捷。
24.易错点2
(3)忽略三角函数中的有界性,三角形中角度的限定,比如一个三角形中,
不可能同时出现两个角的正切值为负
(4)三角的平移变换不清晰,说明:由y=sinx变成y=sinwx的步骤是将横坐
标变成原来的l/|w|倍
25.易错点3
(5)数列求和中,常常使用的错位相减总是粗心算错
规避方法:在写第二步时,提出公差,括号内等比数列求和,最后除掉系
数;
(6)数列中常用变形公式不清楚,如:an=l/[n(n+2)]的求和保留四项
26.易错点4
(7)数列未考虑al是否符合根据sn-sn-1求得的通项公式;
(8)数列并不是简单的全体实数函数,即注意求导研究数列的最值问题过程
中是否取到问题
27.易错点5
(9)向量的运算不完全等价于代数运算;
(10)在求向量的模运算过程中平方之后,忘记开方。
比如这种选择题中常常出现2,弋2的答案...,基本就是选弋2,选2的就是
因为没有开方;
(11)复数的几何意义不清晰
28.关于辅助角公式
asint+bcost=[d(a2+b2)]sin(t+m)其中tanm=b/a[条件:a>0]
说明:一些的同学习惯去考虑sinm或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025中国电信浙江公司校园招聘火热进行中笔试参考题库附带答案详解
- 2024福建泉州丰泽城市建设集团有限公司及权属企业招聘20人笔试参考题库附带答案详解
- 安全员工作年度总结汇报
- 心血管系统疾病的常用药物分析
- 2025中国联合工程有限公司春季招聘笔试参考题库附带答案详解
- 2025年化工企业安全培训计划
- 六年级语文上册复习计划优化建议
- 幼儿园德育工作计划与实施细则
- 部编版五年级语文上册语言艺术培养计划
- 25年公司项目部安全培训考试试题附参考答案(模拟题)
- 医疗机构高警示药品风险管理规范(2023版)
- 幼儿园优质公开课:小班语言《小白鱼过生日》完整绘本有声故事PPT
- 新型马路划线机设计
- 《儿科学》课件第9章第九节 腹泻病
- 钢筋混凝土外文翻译文献
- 项目2 动车组餐车乘务作业《高铁动车餐饮服务》教学课件
- 致远安全技术白皮书(简版)
- 失禁性皮炎预防及护理PPT学习课件
- 爱宝s-990p打卡机说明书
- 厂区巡查记录表
- 医院管理者角色定位与执行力提升小时本
评论
0/150
提交评论