版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省盐津县达标名校2022年中考数学模拟预测题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A. B. C. D.2.如图,已知二次函数y=ax2+bx的图象与正比例函数y=kx的图象相交于点A(1,2),有下面四个结论:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正确的是()A.①② B.②③ C.①④ D.③④3.如图,平行四边形ABCD的顶点A、B、D在⊙O上,顶点C在⊙O直径BE上,连结AE,若∠E=36°,则∠ADC的度数是()A.44° B.53° C.72° D.54°4.小华和小红到同一家鲜花店购买百合花与玫瑰花,他们购买的数量如下表所示,小华一共花的钱比小红少8元,下列说法正确的是()百合花玫瑰花小华6支5支小红8支3支A.2支百合花比2支玫瑰花多8元B.2支百合花比2支玫瑰花少8元C.14支百合花比8支玫瑰花多8元D.14支百合花比8支玫瑰花少8元5.将弧长为2πcm、圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高是()A.cm B.2cm C.2cm D.cm6.如图,是的外接圆,已知,则的大小为A. B. C. D.7.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,则cos∠ECB为()A. B. C. D.8.如图是由四个相同的小正方体堆成的物体,它的正视图是()A. B. C. D.9.点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数的图象上,且x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y3<y1<y2 B.y1<y2<y3 C.y3<y2<y1 D.y2<y1<y310.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且−2≤x≤1时,y的最大值为9,则a的值为A.1或−2B.−2或2C.2D.1二、填空题(共7小题,每小题3分,满分21分)11.如图,已知直线y=x+4与双曲线y=(x<0)相交于A、B两点,与x轴、y轴分别相交于D、C两点,若AB=2,则k=_____.12.在平面直角坐标系中,已知,A(2,0),C(0,﹣1),若P为线段OA上一动点,则CP+AP的最小值为_____.13.已知是一元二次方程的一个根,则方程的另一个根是________.14.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大、小和尚各有x,y人,则可以列方程组__________.15.在△ABC中,AB=AC,∠A=36°,DE是AB的垂直平分线,DE交AB于点D,交AC于点E,连接BE.下列结论①BE平分∠ABC;②AE=BE=BC;③△BEC周长等于AC+BC;④E点是AC的中点.其中正确的结论有_____(填序号)16.如图,在△OAB中,C是AB的中点,反比例函数y=(k>0)在第一象限的图象经过A,C两点,若△OAB面积为6,则k的值为_____.17.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到白球的概率约是_____.摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率m/n0.580.640.580.590.6050.601三、解答题(共7小题,满分69分)18.(10分)如图,一条公路的两侧互相平行,某课外兴趣小组在公路一侧AE的点A处测得公路对面的点C与AE的夹角∠CAE=30°,沿着AE方向前进15米到点B处测得∠CBE=45°,求公路的宽度.(结果精确到0.1米,参考数据:≈1.73)19.(5分)在平面直角坐标系中,抛物线y=(x﹣h)2+k的对称轴是直线x=1.若抛物线与x轴交于原点,求k的值;当﹣1<x<0时,抛物线与x轴有且只有一个公共点,求k的取值范围.20.(8分)如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.(1)如图1,猜想∠QEP=°;(2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.21.(10分)如图,在Rt△ABC中,,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.求证:CE=AD;当D在AB中点时,四边形BECD是什么特殊四边形?说明理由;若D为AB中点,则当=______时,四边形BECD是正方形.22.(10分)计算:()﹣2﹣+(﹣2)0+|2﹣|23.(12分)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.24.(14分)如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与轴交于,两点,过作直线与轴负方向相交成的角,且交轴于点,以点为圆心的圆与轴相切于点.(1)求直线的解析式;(2)将以每秒1个单位的速度沿轴向左平移,当第一次与外切时,求平移的时间.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】试题解析:选项折叠后都不符合题意,只有选项折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.故选B.2、B【解析】
根据抛物线图象性质确定a、b符号,把点A代入y=ax2+bx得到a与b数量关系,代入②,不等式kx≤ax2+bx的解集可以转化为函数图象的高低关系.【详解】解:根据图象抛物线开口向上,对称轴在y轴右侧,则a>0,b<0,则①错误将A(1,2)代入y=ax2+bx,则2=9a+1b∴b=,∴a﹣b=a﹣()=4a﹣>-,故②正确;由正弦定义sinα=,则③正确;不等式kx≤ax2+bx从函数图象上可视为抛物线图象不低于直线y=kx的图象则满足条件x范围为x≥1或x≤0,则④错误.故答案为:B.【点睛】二次函数的图像,sinα公式,不等式的解集.3、D【解析】
根据直径所对的圆周角为直角可得∠BAE=90°,再根据直角三角形的性质和平行四边形的性质可得解.【详解】根据直径所对的圆周角为直角可得∠BAE=90°,根据∠E=36°可得∠B=54°,根据平行四边形的性质可得∠ADC=∠B=54°.故选D【点睛】本题考查了平行四边形的性质、圆的基本性质.4、A【解析】
设每支百合花x元,每支玫瑰花y元,根据总价=单价×购买数量结合小华一共花的钱比小红少8元,即可得出关于x、y的二元一次方程,整理后即可得出结论.【详解】设每支百合花x元,每支玫瑰花y元,根据题意得:8x+3y﹣(6x+5y)=8,整理得:2x﹣2y=8,∴2支百合花比2支玫瑰花多8元.故选:A.【点睛】考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.5、B【解析】
由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高.【详解】解:设圆锥母线长为Rcm,则2π=,解得R=3cm;设圆锥底面半径为rcm,则2π=2πr,解得r=1cm.由勾股定理可得圆锥的高为=2cm.故选择B.【点睛】本题考查了圆锥的概念和弧长的计算.6、A【解析】解:△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=∠AOB=60°;故选A.7、D【解析】
连接EB,设圆O半径为r,根据勾股定理可求出半径r=4,从而可求出EB的长度,最后勾股定理即可求出CE的长度.利用锐角三角函数的定义即可求出答案.【详解】解:连接EB,由圆周角定理可知:∠B=90°,设⊙O的半径为r,由垂径定理可知:AC=BC=4,∵CD=2,∴OC=r-2,∴由勾股定理可知:r2=(r-2)2+42,∴r=5,BCE中,由勾股定理可知:CE=2,∴cos∠ECB==,故选D.【点睛】本题考查垂径定理,涉及勾股定理,垂直定理,解方程等知识,综合程度较高,属于中等题型.8、A【解析】【分析】根据正视图是从物体的正面看得到的图形即可得.【详解】从正面看可得从左往右2列正方形的个数依次为2,1,如图所示:故选A.【点睛】本题考查了三视图的知识,正视图是从物体的正面看得到的视图.9、A【解析】
作出反比例函数的图象(如图),即可作出判断:∵-3<1,∴反比例函数的图象在二、四象限,y随x的增大而增大,且当x<1时,y>1;当x>1时,y<1.∴当x1<x2<1<x3时,y3<y1<y2.故选A.10、D【解析】
先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由-2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【详解】∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=-2a2a∵当x≥2时,y随x的增大而增大,∴a>0,∵-2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a-6=0,∴a=1,或a=-2(不合题意舍去).故选D.【点睛】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-b2a,4ac-b24a),对称轴直线x=-b2a,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-b2a时,y随x的增大而减小;x>-b2a时,y随x的增大而增大;x=-b2a时,y取得最小值4ac-b24a二、填空题(共7小题,每小题3分,满分21分)11、-3【解析】设A(a,a+4),B(c,c+4),则解得:x+4=,即x2+4x−k=0,∵直线y=x+4与双曲线y=相交于A、B两点,∴a+c=−4,ac=-k,∴(c−a)2=(c+a)2−4ac=16+4k,∵AB=,∴由勾股定理得:(c−a)2+[c+4−(a+4)]2=()2,2(c−a)2=8,(c−a)2=4,∴16+4k=4,解得:k=−3,故答案为−3.点睛:本题考查了一次函数与反比例函数的交点问题、根与系数的关系、勾股定理、图象上点的坐标特征等,题目具有一定的代表性,综合性强,有一定难度.12、【解析】
可以取一点D(0,1),连接AD,作CN⊥AD于点N,PM⊥AD于点M,根据勾股定理可得AD=3,证明△APM∽△ADO得,PM=AP.当CP⊥AD时,CP+AP=CP+PM的值最小,最小值为CN的长.【详解】如图,取一点D(0,1),连接AD,作CN⊥AD于点N,PM⊥AD于点M,在Rt△AOD中,∵OA=2,OD=1,∴AD==3,∵∠PAM=∠DAO,∠AMP=∠AOD=90°,∴△APM∽△ADO,∴,即,∴PM=AP,∴PC+AP=PC+PM,∴当CP⊥AD时,CP+AP=CP+PM的值最小,最小值为CN的长.∵△CND∽△AOD,∴,即∴CN=.所以CP+AP的最小值为.故答案为:.【点睛】此题考查勾股定理,三角形相似的判定及性质,最短路径问题,如何找到AP的等量线段与线段CP相加是解题的关键,由此利用勾股定理、相似三角形做辅助线得到垂线段PM,使问题得解.13、【解析】
通过观察原方程可知,常数项是一未知数,而一次项系数为常数,因此可用两根之和公式进行计算,将2-代入计算即可.【详解】设方程的另一根为x1,又∵x=2-,由根与系数关系,得x1+2-=4,解得x1=2+.故答案为:【点睛】解决此类题目时要认真审题,确定好各系数的数值与正负,然后适当选择一个根与系数的关系式求解.14、3x+【解析】
根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程组即可.【详解】设大和尚x人,小和尚y人,由题意可得x+y=故答案为x+y=【点睛】本题考查了由实际问题抽象出二元一次方程组,关键以和尚数和馒头数作为等量关系列出方程组.15、①②③【解析】试题分析:根据三角形内角和定理求出∠ABC、∠C的度数,根据线段垂直平分线的性质得到EA=EB,根据等腰三角形的判定定理和三角形的周长公式计算即可.解:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵DE是AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=36°,∴∠EBC=36°,∴∠EBA=∠EBC,∴BE平分∠ABC,①正确;∠BEC=∠EBA+∠A=72°,∴∠BEC=∠C,∴BE=BC,∴AE=BE=BC,②正确;△BEC周长=BC+CE+BE=BC+CE+EA=AC+BC,③正确;∵BE>EC,AE=BE,∴AE>EC,∴点E不是AC的中点,④错误,故答案为①②③.考点:线段垂直平分线的性质;等腰三角形的判定与性质.16、4【解析】
分别过点、点作的垂线,垂足分别为点、点,根据是的中点得到为的中位线,然后设,,,根据,得到,最后根据面积求得,从而求得.【详解】分别过点、点作的垂线,垂足分别为点、点,如图点为的中点,为的中位线,,,,,,,,,.故答案为:.【点睛】本题考查了反比例函数的比例系数的几何意义及三角形的中位线定理,关键是正确作出辅助线,掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.17、0.1【解析】
根据表格中的数据,随着实验次数的增大,频率逐渐稳定在0.1左右,即为摸出白球的概率.【详解】解:观察表格得:通过多次摸球实验后发现其中摸到白球的频率稳定在0.1左右,则P白球=0.1.故答案为0.1.【点睛】本题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.三、解答题(共7小题,满分69分)18、公路的宽为20.5米.【解析】
作CD⊥AE,设CD=x米,由∠CBD=45°知BD=CD=x,根据tan∠CAD=,可得=,解之即可.【详解】解:如图,过点C作CD⊥AE于点D,设公路的宽CD=x米,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵∠CAE=30°,∴tan∠CAD==,即=,解得:x=≈20.5(米),答:公路的宽为20.5米.【点睛】本题考查了直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形.19、(1)k=﹣1;(2)当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.【解析】
(1)由抛物线的对称轴直线可得h,然后再由抛物线交于原点代入求出k即可;(2)先根据抛物线与x轴有公共点求出k的取值范围,然后再根据抛物线的对称轴及当﹣1<x<2时,抛物线与x轴有且只有一个公共点,进一步求出k的取值范围即可.【详解】解:(1)∵抛物线y=(x﹣h)2+k的对称轴是直线x=1,∴h=1,把原点坐标代入y=(x﹣1)2+k,得,(2﹣1)2+k=2,解得k=﹣1;(2)∵抛物线y=(x﹣1)2+k与x轴有公共点,∴对于方程(x﹣1)2+k=2,判别式b2﹣4ac=﹣4k≥2,∴k≤2.当x=﹣1时,y=4+k;当x=2时,y=1+k,∵抛物线的对称轴为x=1,且当﹣1<x<2时,抛物线与x轴有且只有一个公共点,∴4+k>2且1+k<2,解得﹣4<k<﹣1,综上,当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.【点睛】抛物线与一元二次方程的综合是本题的考点,熟练掌握抛物线的性质是解题的关键.20、(1)∠QEP=60°;(2)∠QEP=60°,证明详见解析;(3)【解析】
(1)如图1,先根据旋转的性质和等边三角形的性质得出∠PCA=∠QCB,进而可利用SAS证明△CQB≌△CPA,进而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的内角和定理即可求得∠QEP=∠QCP,从而完成猜想;(2)以∠DAC是锐角为例,如图2,仿(1)的证明思路利用SAS证明△ACP≌△BCQ,可得∠APC=∠Q,进一步即可证得结论;(3)仿(2)可证明△ACP≌△BCQ,于是AP=BQ,再求出AP的长即可,作CH⊥AD于H,如图3,易证∠APC=30°,△ACH为等腰直角三角形,由AC=4可求得CH、PH的长,于是AP可得,问题即得解决.【详解】解:(1)∠QEP=60°;证明:连接PQ,如图1,由题意得:PC=CQ,且∠PCQ=60°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠PCA=∠QCB,则在△CPA和△CQB中,,∴△CQB≌△CPA(SAS),∴∠CQB=∠CPA,又因为△PEM和△CQM中,∠EMP=∠CMQ,∴∠QEP=∠QCP=60°.故答案为60;(2)∠QEP=60°.以∠DAC是锐角为例.证明:如图2,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∵线段CP绕点C顺时针旋转60°得到线段CQ,∴CP=CQ,∠PCQ=60°,∴∠ACB+∠BCP=∠BCP+∠PCQ,即∠ACP=∠BCQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴∠APC=∠Q,∵∠1=∠2,∴∠QEP=∠PCQ=60°;
(3)连结CQ,作CH⊥AD于H,如图3,与(2)一样可证明△ACP≌△BCQ,∴AP=BQ,∵∠DAC=135°,∠ACP=15°,∴∠APC=30°,∠CAH=45°,∴△ACH为等腰直角三角形,∴AH=CH=AC=×4=,在Rt△PHC中,PH=CH=,∴PA=PH−AH=-,∴BQ=−.【点睛】本题考查了等边三角形的性质、旋转的性质、全等三角形的判定和性质、等腰直角三角形的性质和有关计算、30°角的直角三角形的性质等知识,涉及的知识点多、综合性强,灵活应用全等三角形的判定和性质、熟练掌握旋转的性质和相关图形的性质是解题的关键.21、(1)详见解析;(2)菱形;(3)当∠A=45°,四边形BECD是正方形.【解析】
(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.【详解】(1)∵DE⊥BC,∴∠DFP=90°,∵∠ACB=90°,∴∠DFB=∠ACB,∴DE//AC,∵MN//AB,∴四边形ADEC为平行四边形,∴CE=AD;(2)菱形,理由如下:在直角三角形ABC中,∵D为AB中点,∴BD=AD,∵CE=AD,∴BD=CE,∴MN//AB,∴BECD是平行四边形,∵∠ACB=90°,D是AB中点,∴BD=CD,(斜边中线等于斜边一半)∴四边形BECD是菱形;(3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育学题库练习试卷B卷附答案
- 2024年度山西省高校教师资格证之高等教育法规综合练习试卷B卷附答案
- 2023年眼镜类产品及其零部件和眼镜盒资金需求报告
- 第41章 氨基甙类抗生素课件
- 社区消防安全集中除患攻坚大整治工作总结
- 运动会入场式方案
- 2024年拍卖交易协议模板集锦
- 2024年设计师服务结束协议模板
- 2024年度防洪排水项目施工协议
- 2024年劳动协议格式与条款汇编
- 《2023级学生手册》奖、惩资助、文明部分学习通超星期末考试答案章节答案2024年
- 第15课 两次鸦片战争 教学设计 高中历史统编版(2019)必修中外历史纲要上册+
- 期末知识点复习 2024-2025学年统编版语文九年级上册
- 《江苏省一年级上学期数学第二单元试卷》
- 上海市普通高中学业水平合格性考试地理基础知识点复习提纲
- 废旧风机叶片循环利用项目可行性研究报告-积极稳妥推进碳达峰碳中和
- 中医脑病科缺血性中风(脑梗死恢复期)中医诊疗方案临床疗效分析总结
- 中国人工智能系列白皮书一元宇宙技术(2024 版)
- 《甘肃省中医康复中心建设标准(2021版)》
- 高中英语外刊-小猫钓鱼50篇
- PowerPoint培训教程课件
评论
0/150
提交评论