广东梅州市丰顺县2023-2024学年中考数学模拟试题含解析_第1页
广东梅州市丰顺县2023-2024学年中考数学模拟试题含解析_第2页
广东梅州市丰顺县2023-2024学年中考数学模拟试题含解析_第3页
广东梅州市丰顺县2023-2024学年中考数学模拟试题含解析_第4页
广东梅州市丰顺县2023-2024学年中考数学模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东梅州市丰顺县2023-2024学年中考数学模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,已知矩形ABCD中,BC=2AB,点E在BC边上,连接DE、AE,若EA平分∠BED,则的值为()A. B. C. D.2.若代数式的值为零,则实数x的值为()A.x=0 B.x≠0 C.x=3 D.x≠33.方程的解为()A.x=4 B.x=﹣3 C.x=6 D.此方程无解4.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球5.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A. B. C. D.6.如图,菱形ABCD中,∠B=60°,AB=4,以AD为直径的⊙O交CD于点E,则的长为()A. B. C. D.7.2018的相反数是()A. B.2018 C.-2018 D.8.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0;②﹣1≤a≤;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个 B.2个 C.3个 D.4个9.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1.其中合理的是()A.① B.② C.①③ D.②③10.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10° B.20° C.50° D.70°二、填空题(共7小题,每小题3分,满分21分)11.如果=k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____.12.分解因式:4a3b﹣ab=_____.13.将代入函数中,所得函数值记为,又将代入函数中,所得的函数值记为,再将代入函数中,所得函数值记为…,继续下去.________;________;________;________.14.如图为二次函数图象的一部分,其对称轴为直线.若其与x轴一交点为A(3,0)则由图象可知,不等式的解集是_______.15.将多项式xy2﹣4xy+4y因式分解:_____.16.我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为_____.17.如图,已知正方形ABCD中,∠MAN=45°,连接BD与AM,AN分别交于E,F点,则下列结论正确的有_____.①MN=BM+DN②△CMN的周长等于正方形ABCD的边长的两倍;③EF1=BE1+DF1;④点A到MN的距离等于正方形的边长⑤△AEN、△AFM都为等腰直角三角形.⑥S△AMN=1S△AEF⑦S正方形ABCD:S△AMN=1AB:MN⑧设AB=a,MN=b,则≥1﹣1.三、解答题(共7小题,满分69分)18.(10分)如图(1),AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由;若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的∠1与∠2的关系成立吗?请说明理由.19.(5分)如图,AB=AD,AC=AE,BC=DE,点E在BC上.求证:△ABC≌△ADE;(2)求证:∠EAC=∠DEB.20.(8分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?21.(10分)已如:⊙O与⊙O上的一点A(1)求作:⊙O的内接正六边形ABCDEF;(要求:尺规作图,不写作法但保留作图痕迹)(2)连接CE,BF,判断四边形BCEF是否为矩形,并说明理由.22.(10分)边长为6的等边△ABC中,点D,E分别在AC,BC边上,DE∥AB,EC=2如图1,将△DEC沿射线EC方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N.当CC′多大时,四边形MCND′为菱形?并说明理由.如图2,将△DEC绕点C旋转∠α(0°<α<360°),得到△D′E′C,连接AD′,BE′.边D′E′的中点为P.①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;②连接AP,当AP最大时,求AD′的值.(结果保留根号)23.(12分)先化简,再求值:,其中x满足x2﹣x﹣1=1.24.(14分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.若∠ABC=70°,则∠NMA的度数是度.若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

过点A作AF⊥DE于F,根据角平分线上的点到角的两边距离相等可得AF=AB,利用全等三角形的判定和性质以及矩形的性质解答即可.【详解】解:如图,过点A作AF⊥DE于F,在矩形ABCD中,AB=CD,∵AE平分∠BED,∴AF=AB,∵BC=2AB,∴BC=2AF,∴∠ADF=30°,在△AFD与△DCE中∵∠C=∠AFD=90°,∠ADF=∠DEC,AF=DC,,∴△AFD≌△DCE(AAS),∴△CDE的面积=△AFD的面积=∵矩形ABCD的面积=AB•BC=2AB2,∴2△ABE的面积=矩形ABCD的面积﹣2△CDE的面积=(2﹣)AB2,∴△ABE的面积=,∴,故选:C.【点睛】本题考查了矩形的性质,角平分线上的点到角的两边距离相等的性质,以及全等三角形的判定与性质,关键是根据角平分线上的点到角的两边距离相等可得AF=AB.2、A【解析】

根据分子为零,且分母不为零解答即可.【详解】解:∵代数式的值为零,∴x=0,此时分母x-3≠0,符合题意.故选A.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.3、C【解析】

先把分式方程化为整式方程,求出x的值,代入最简公分母进行检验.【详解】方程两边同时乘以x-2得到1-(x-2)=﹣3,解得x=6.将x=6代入x-2得6-2=4,∴x=6就是原方程的解.故选C【点睛】本题考查的是解分式方程,熟知解分式方程的基本步骤是解答此题的关键.4、A【解析】

根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.5、D【解析】

过B点作BD⊥AC,如图,由勾股定理得,AB=,AD=,cosA===,故选D.6、B【解析】

连接OE,由菱形的性质得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性质和三角形内角和定理求出∠DOE=60°,再由弧长公式即可得出答案.【详解】解:连接OE,如图所示:∵四边形ABCD是菱形,∴∠D=∠B=60°,AD=AB=4,∴OA=OD=2,∵OD=OE,∴∠OED=∠D=60°,∴∠DOE=180°﹣2×60°=60°,∴的长==;故选B.【点睛】本题考查弧长公式、菱形的性质、等腰三角形的性质等知识;熟练掌握菱形的性质,求出∠DOE的度数是解决问题的关键.7、C【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】2018与-2018只有符号不同,由相反数的定义可得2018的相反数是-2018,故选C.【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.8、C【解析】

①由抛物线的顶点横坐标可得出b=-2a,进而可得出4a+2b=0,结论①错误;

②利用一次函数图象上点的坐标特征结合b=-2a可得出a=-,再结合抛物线与y轴交点的位置即可得出-1≤a≤-,结论②正确;

③由抛物线的顶点坐标及a<0,可得出n=a+b+c,且n≥ax2+bx+c,进而可得出对于任意实数m,a+b≥am2+bm总成立,结论③正确;

④由抛物线的顶点坐标可得出抛物线y=ax2+bx+c与直线y=n只有一个交点,将直线下移可得出抛物线y=ax2+bx+c与直线y=n-1有两个交点,进而可得出关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.【详解】:①∵抛物线y=ax2+bx+c的顶点坐标为(1,n),

∴-=1,

∴b=-2a,

∴4a+2b=0,结论①错误;

②∵抛物线y=ax2+bx+c与x轴交于点A(-1,0),

∴a-b+c=3a+c=0,

∴a=-.

又∵抛物线y=ax2+bx+c与y轴的交点在(0,2),(0,3)之间(包含端点),

∴2≤c≤3,

∴-1≤a≤-,结论②正确;

③∵a<0,顶点坐标为(1,n),

∴n=a+b+c,且n≥ax2+bx+c,

∴对于任意实数m,a+b≥am2+bm总成立,结论③正确;

④∵抛物线y=ax2+bx+c的顶点坐标为(1,n),

∴抛物线y=ax2+bx+c与直线y=n只有一个交点,

又∵a<0,

∴抛物线开口向下,

∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,

∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.

故选C.【点睛】本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.9、B【解析】

根据图形和各个小题的说法可以判断是否正确,从而解答本题【详解】当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:411÷500=0.822,但“罚球命中”的概率不一定是0.822,故①错误;随着罚球次数的增加,“罚球命中”的频率总在0.2附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2.故②正确;虽然该球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概率不是0.1,故③错误.故选:B.【点睛】此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.10、B【解析】

要使木条a与b平行,那么∠1=∠2,从而可求出木条a至少旋转的度数.【详解】解:∵要使木条a与b平行,∴∠1=∠2,∴当∠1需变为50º,∴木条a至少旋转:70º-50º=20º.故选B.【点睛】本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.二、填空题(共7小题,每小题3分,满分21分)11、3【解析】∵=k,∴a=bk,c=dk,e=fk,∴a+c+e=bk+dk+fk=k(a+b+c),∵a+c+e=3(b+d+f),∴k=3,故答案为:3.12、ab(2a+1)(2a-1)【解析】

先提取公因式再用公式法进行因式分解即可.【详解】4a3b-ab=ab(4a2-1)=ab(2a+1)(2a-1)【点睛】此题主要考查因式分解单项式,解题的关键是熟知因式分解的方法.13、22【解析】

根据数量关系分别求出y1,y2,y3,y4,…,不难发现,每3次计算为一个循环组依次循环,用2006除以3,根据商和余数的情况确定y2006的值即可.【详解】y1=,

y2=−=2,

y3=−=,

y4=−=,

…,

∴每3次计算为一个循环组依次循环,

∵2006÷3=668余2,

∴y2006为第669循环组的第2次计算,与y2的值相同,

∴y2006=2,

故答案为;2;;2.【点睛】本题考查反比例函数的定义,解题的关键是多运算找规律.14、﹣1<x<1【解析】试题分析:由图象得:对称轴是x=1,其中一个点的坐标为(1,0)∴图象与x轴的另一个交点坐标为(-1,0)利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴-1<x<1.考点:二次函数与不等式(组).15、y(xy﹣4x+4)【解析】

直接提公因式y即可解答.【详解】xy2﹣4xy+4y=y(xy﹣4x+4).故答案为:y(xy﹣4x+4).【点睛】本题考查了因式分解——提公因式法,确定多项式xy2﹣4xy+4y的公因式为y是解决问题的关键.16、(2,)【解析】过C作CH于H,由题意得2AO=AD’,所以∠D’AO=60°,AO=1,AD’=2,勾股定理知OD’=,BH=AO所以C’(2,).故答案为(2,).17、①②③④⑤⑥⑦.【解析】

将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.证明△MAN≌△HAN,得到MN=NH,根据三角形周长公式计算判断①;判断出BM=DN时,MN最小,即可判断出⑧;根据全等三角形的性质判断②④;将△ADF绕点A顺时针性质90°得到△ABH,连接HE.证明△EAH≌△EAF,得到∠HBE=90°,根据勾股定理计算判断③;根据等腰直角三角形的判定定理判断⑤;根据等腰直角三角形的性质、三角形的面积公式计算,判断⑥,根据点A到MN的距离等于正方形ABCD的边长、三角形的面积公式计算,判断⑦.【详解】将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.则∠DAH=∠BAM,∵四边形ABCD是正方形,∴∠BAD=90°,∵∠MAN=45°,∴∠BAN+∠DAN=45°,∴∠NAH=45°,在△MAN和△HAN中,,∴△MAN≌△HAN,∴MN=NH=BM+DN,①正确;∵BM+DN≥1,(当且仅当BM=DN时,取等号)∴BM=DN时,MN最小,∴BM=b,∵DH=BM=b,∴DH=DN,∵AD⊥HN,∴∠DAH=∠HAN=11.5°,在DA上取一点G,使DG=DH=b,∴∠DGH=45°,HG=DH=b,∵∠DGH=45°,∠DAH=11.5°,∴∠AHG=∠HAD,∴AG=HG=b,∴AB=AD=AG+DG=b+b=b=a,∴,∴,当点M和点B重合时,点N和点C重合,此时,MN最大=AB,即:,∴≤≤1,⑧错误;∵MN=NH=BM+DN∴△CMN的周长=CM+CN+MN=CM+BM+CN+DN=CB+CD,∴△CMN的周长等于正方形ABCD的边长的两倍,②结论正确;∵△MAN≌△HAN,∴点A到MN的距离等于正方形ABCD的边长AD,④结论正确;如图1,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AD,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE1=BH1+BE1,∵BH=DF,EF=HE,∵EF1=BE1+DF1,③结论正确;∵四边形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∴A、E、N、D四点共圆,∴∠ADN+∠AEN=180°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;⑤结论正确;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM=AF,AN=AE,如图3,过点M作MP⊥AN于P,在Rt△APM中,∠MAN=45°,∴MP=AMsin45°,∵S△AMN=AN•MP=AM•AN•sin45°,S△AEF=AE•AF•sin45°,∴S△AMN:S△AEF=1,∴S△AMN=1S△AEF,⑥正确;∵点A到MN的距离等于正方形ABCD的边长,∴S正方形ABCD:S△AMN==1AB:MN,⑦结论正确.即:正确的有①②③④⑤⑥⑦,故答案为①②③④⑤⑥⑦.【点睛】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,解本题的关键是构造全等三角形.三、解答题(共7小题,满分69分)18、详见解析.【解析】

(1)根据全等三角形判定中的“SSS”可得出△ADC≌△CBA,由全等的性质得∠DAC=∠BCA,可证AD∥BC,根据平行线的性质得出∠1=∠1;(1)(3)和(1)的证法完全一样.先证△ADC≌△CBA得到∠DAC=∠BCA,则DA∥BC,从而∠1=∠1.【详解】证明:∠1与∠1相等.在△ADC与△CBA中,,∴△ADC≌△CBA.(SSS)∴∠DAC=∠BCA.∴DA∥BC.∴∠1=∠1.②③图形同理可证,△ADC≌△CBA得到∠DAC=∠BCA,则DA∥BC,∠1=∠1.19、(1)详见解析;(2)详见解析.【解析】

(1)用“SSS”证明即可;(2)借助全等三角形的性质及角的和差求出∠DAB=∠EAC,再利用三角形内角和定理求出∠DEB=∠DAB,即可说明∠EAC=∠DEB.【详解】解:(1)在△ABC和△ADE中∴△ABC≌△ADE(SSS);(2)由△ABC≌△ADE,则∠D=∠B,∠DAE=∠BAC.∴∠DAE﹣∠ABE=∠BAC﹣∠BAE,即∠DAB=∠EAC.设AB和DE交于点O,∵∠DOA=BOE,∠D=∠B,∴∠DEB=∠DAB.∴∠EAC=∠DEB.【点睛】本题主要考查了全等三角形的判定和性质,解题的关键是利用全等三角形的性质求出相等的角,体现了转化思想的运用.20、(1)117(2)见解析(3)B(4)30【解析】

(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A等级人数所占比例可得.【详解】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21、(1)答案见解析;(2)证明见解析.【解析】

(1)如图,在⊙O上依次截取六段弦,使它们都等于OA,从而得到正六边形ABCDEF;(2)连接BE,如图,利用正六边形的性质得AB=BC=CD=DE=EF=FA,,则判断BE为直径,所以∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,然后判断四边形BCEF为矩形.【详解】解:(1)如图,正六边形ABCDEF为所作;(2)四边形BCEF为矩形.理由如下:连接BE,如图,∵六边形ABCDEF为正六边形,∴AB=BC=CD=DE=EF=FA,∴,∴,∴,∴BE为直径,∴∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,∴四边形BCEF为矩形.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了矩形的判定与正六边形的性质.22、(1)当CC'=时,四边形MCND'是菱形,理由见解析;(2)①AD'=BE',理由见解析;②.【解析】

(1)先判断出四边形MCND'为平行四边形,再由菱形的性质得出CN=CM,即可求出CC';(2)①分两种情况,利用旋转的性质,即可判断出△ACD≌△BCE'即可得出结论;②先判断出点A,C,P三点共线,先求出CP,AP,最后用勾股定理即可得出结论.【详解】(1)当CC'=时,四边形MCND'是菱形.理由:由平移的性质得,CD∥C'D',DE∥D'E',∵△ABC是等边三角形,∴∠B=∠ACB=60°,∴∠ACC'=180°-∠ACB=120°,∵CN是∠ACC'的角平分线,∴∠D'E'C'=∠A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论