2023-2024学年江苏省启东市高一数学第二学期期末考试试题含解析_第1页
2023-2024学年江苏省启东市高一数学第二学期期末考试试题含解析_第2页
2023-2024学年江苏省启东市高一数学第二学期期末考试试题含解析_第3页
2023-2024学年江苏省启东市高一数学第二学期期末考试试题含解析_第4页
2023-2024学年江苏省启东市高一数学第二学期期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年江苏省启东市高一数学第二学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,且不等式的解集为,则函数的图象为()A. B.C. D.2.在中,,,为的外接圆的圆心,则()A. B.C. D.3.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积(弦矢+矢).弧田,由圆弧和其所对弦所围成.公式中“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,弦长等于的弧田.按照《九章算术》中弧田面积的经验公式计算所得弧田面积为()A. B. C. D.4.已知等比数列中,,数列是等差数列,且,则()A.3 B.6 C.7 D.85.已知是单位向量,.若向量满足()A. B.C. D.6.下列说法中,正确的是()A.若,则B.若,则C.若,则D.若,则7.已知两条直线与两个平面,给出下列命题:①若,则;②若,则;③若,则;④若,则;其中正确的命题个数为A.1 B.2 C.3 D.48.如果且,那么的大小关系是()A. B.C. D.9.已知均为锐角,,则=A. B. C. D.10.若实数满足,则的大小关系是:A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知的内角、、的对边分别为、、,若,,且的面积是,___________.12.利用数学归纳法证明不等式“”的过程中,由“”变到“”时,左边增加了_____项.13.已知数列满足,若,则的所有可能值的和为______;14.已知样本数据的方差是1,如果有,那么数据,的方差为______.15.终边经过点,则_____________16.已知等差数列中,首项,公差,前项和,则使有最小值的_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,三条直线型公路,,在点处交汇,其中与、与的夹角都为,在公路上取一点,且km,过铺设一直线型的管道,其中点在上,点在上(,足够长),设km,km.(1)求出,的关系式;(2)试确定,的位置,使得公路段与段的长度之和最小.18.如图,在四棱锥中,底面为正方形,平面,,与交于点,,分别为,的中点.(Ⅰ)求证:平面平面;(Ⅱ)求证:∥平面;(Ⅲ)求证:平面.19.已知的角、、所对的边分别是、、,设向量,,.(1)若,求证:为等腰三角形;(2)若,边长,角,求的面积.20.已知函数,且,.(1)求该函数的最小正周期及对称中心坐标;(2)若方程的根为,且,求的值.21.已知函数,(1)求的单调递增区间.(2)求在区间的最大值和最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】本题考查二次函数图像,二次方程的根,二次不等式的解集三者之间的关系.不等式的解集为,所以方程的两根是则解得所以则故选B2、A【解析】

利用正弦定理可求出的外接圆半径.【详解】由正弦定理可得,因此,,故选A.【点睛】本题考查利用正弦定理求三角形外接圆的半径,考查计算能力,属于基础题.3、C【解析】

首先根据图形计算出矢,弦,再带入弧田面积公式即可.【详解】如图所示:因为,,为等边三角形.所以,矢,弦..故选:C【点睛】本题主要考查扇形面积公式,同时考查学生对题意的理解,属于中档题.4、D【解析】

由等比数列的性质求得,再由等差数列的性质可得结果.【详解】因为等比数列,且,解得,数列是等差数列,则,故选:D.【点睛】本题主要考查等比数列与等差数列的下标性质,属于基础题.解等差数列问题要注意应用等差数列的性质().5、A【解析】

因为,,做出图形可知,当且仅当与方向相反且时,取到最大值;最大值为;当且仅当与方向相同且时,取到最小值;最小值为.6、C【解析】试题分析:选项A中,条件应为;选项B中当时不成立;选项D中,结论应为;C正确.考点:不等式的性质.7、A【解析】

结合线面平行定理和举例判断.【详解】若,则可能平行或异面,故①错误;若,则可能与的交线平行,故②错误;若,则,所以,故③正确;若,则可能平行,相交或异面,故④错误;故选A.【点睛】本题线面关系的判断,主要依据线面定理和举例排除.8、B【解析】

取,故选B.9、A【解析】因为,所以,又,所以,则;因为且,所以,又,所以;则====;故选A.点睛:三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.10、D【解析】分析:先解不等式,再根据不等式性质确定的大小关系.详解:因为,所以,所以选D.点睛:本题考查一元二次不等式解法以及不等式性质,考查基本求解能力与运用性质解决问题能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用同角三角函数计算出的值,利用三角形的面积公式和条件可求出、的值,再利用余弦定理求出的值.【详解】,,,且的面积是,,,,,由余弦定理得,.故答案为.【点睛】本题考查利用余弦定理解三角形,同时也考查了同角三角函数的基本关系、三角形面积公式的应用,考查运算求解能力,属于中等题.12、.【解析】

分析题意,根据数学归纳法的证明方法得到时,不等式左边的表示式是解答该题的突破口,当时,左边,由此将其对时的式子进行对比,得到结果.【详解】当时,左边,当时,左边,观察可知,增加的项数是,故答案是.【点睛】该题考查的是有关数学归纳法的问题,在解题的过程中,需要明确式子的形式,正确理解对应式子中的量,认真分析,明确哪些项是添的,得到结果.13、36【解析】

根据条件得到的递推关系,从而判断出的类型求解出可能的通项公式,即可计算出的所有可能值,并完成求和.【详解】因为,所以或,当时,是等差数列,,所以;当时,是等比数列,,所以,所以的所有可能值之和为:.故答案为:.【点睛】本题考查等差和等比数列的判断以及求数列中项的值,难度一般.已知数列满足(为常数),则是公差为的等差数列;已知数列满足,则是公比为的等比数列.14、1【解析】

利用方差的性质直接求解.【详解】根据题意,样本数据的平均数为,方差是1,则有,对于数据,其平均数为,其方差为,故答案为1.【点睛】本题考查方差的求法,考查方差的性质等基础知识,考查运算求解能力,是基础题.15、【解析】

根据正弦值的定义,求得正弦值.【详解】依题意.故答案为:【点睛】本小题主要考查根据角的终边上一点的坐标求正弦值,属于基础题.16、或【解析】

求出,然后利用,求出的取值范围,即可得出使得有最小值的的值.【详解】,令,解得.因此,当或时,取得最小值.故答案为:或.【点睛】本题考查等差数列前项和的最小值求解,可以利用二次函数性质求前项和的最小值,也可以转化为数列所有非正数项相加,考查计算能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)当时,公路段与段的总长度最小【解析】

(1)(法一)观察图形可得,由此根据三角形的面积公式,建立方程,化简即可得到的关系式;(法二)以点为坐标原点,所在的直线为轴建立平面直角坐标系,找到各点坐标,根据三点共线,即可得到结论;(2)运用“乘1法”,利用基本不等式,即可求得最值,得到答案.【详解】(1)(法一)由图形可知.,,所以,即.(法二)以为坐标原点,所在的直线为轴建立平面直角坐标系,则,,,,由,,三点共线得.(2)由(1)可知,则(),当且仅当(km)时取等号.答:当时,公路段与段的总长度最小为8..【点睛】本题主要考查了三角形的面积公式应用,以及利用基本不等式求最值,着重考查了推理运算能力,属于基础题.18、(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析【解析】

(I)通过证明平面来证得平面平面.(II)取中点,连接,通过证明四边形为平行四边形,证得,由此证得∥平面.(III)通过证明平面证得,通过计算证明证得,由此证得平面.【详解】证明:(Ⅰ)因为平面,所以.因为,,所以平面.因为平面,所以平面平面.(Ⅱ)取中点,连结,因为为的中点所以,且.因为为的中点,底面为正方形,所以,且.所以,且.所以四边形为平行四边形.所以.因为平面且平面,所以平面.(Ⅲ)在正方形中,,因为平面,所以.因为,所以平面.所以.在△中,设交于.因为,且分别为的中点,所以.所以.设,由已知,所以.所以.所以.所以,且为公共角,所以△∽△.所以.所以.因为,所以平面.【点睛】本小题主要考查线面垂直、面面垂直的证明,考查线面平行的证明,考查空间想象能力和逻辑推理能力,属于中档题.19、(1)见解析(2)【解析】

⑴因为,所以,即,其中是的外接圆半径,所以,所以为等腰三角形.⑵因为,所以.由余弦定理可知,,即解方程得:(舍去)所以.20、(1)最小正周期为.对称中心坐标为;(2)-1【解析】

(1)由题意两未知数列两方程即可求出、的值,再进行三角变换,可得的解析式,再利用正弦函数的周期公式、图象的对称性,即可得出结论.(2)先由条件求得的值,可得的值.【详解】(1)由,得:,解得:,,,即函数的最小正周期为.由得:函数的对称中心坐标为;(2)由题意得:,即,或,则或,由知:,.【点睛】本题主要考查三角恒等变换,正弦函数的周期性、图象的对称性,以及三角函数求值.21、(1),;(2)最大值为,最小值为【解析】

利用二倍角公式、两角和差正弦公式和辅助角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论