2023-2024学年银川第二中学高一数学第二学期期末达标检测试题含解析_第1页
2023-2024学年银川第二中学高一数学第二学期期末达标检测试题含解析_第2页
2023-2024学年银川第二中学高一数学第二学期期末达标检测试题含解析_第3页
2023-2024学年银川第二中学高一数学第二学期期末达标检测试题含解析_第4页
2023-2024学年银川第二中学高一数学第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年银川第二中学高一数学第二学期期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图象沿轴向左平移个单位长度后得到函数的图象的一个对称中心是()A. B. C. D.2.如图所示四棱锥的底面为正方形,平面则下列结论中不正确的是()A. B.平面C.直线与平面所成的角等于30° D.SA与平面SBD所成的角等于SC与平面SBD所成的角3.已知为锐角,,则()A. B. C. D.4.下面四个命题:①“直线a∥直线b”的充要条件是“a平行于b所在的平面”;②“直线l⊥平面α内所有直线”的充要条件是“l⊥平面α”;③“直线a、b为异面直线”的必要不充分条件是“直线a、b不相交”;④“平面α∥平面β”的充分不必要条件是“α内存在不共线的三点到β的距离相等”;其中正确命题的序号是()A.①② B.②③ C.③④ D.②④5.函数的最大值为()A. B. C. D.6.一个平面截一球得到直径为6的圆面,球心到这个圆面的距离为4,则这个球的体积为()A. B. C. D.7.直线的斜率是()A. B.13 C.0 D.8.已知,,则等于()A. B. C. D.9.“”是“直线:与直线:垂直”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件10.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则二、填空题:本大题共6小题,每小题5分,共30分。11.不论k为何实数,直线通过一个定点,这个定点的坐标是______.12.从集合A={-1,1,2}中随机选取一个数记为k,从集合B={-2,1,2}中随机选取一个数记为b,则直线y=kx+b不经过第三象限的概率为_____.13.如图,在中,,,点D为BC的中点,设,.的值为___________.14.已知三点、、共线,则a=_______.15.设α为第二象限角,若sinα=3516.已知求______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,,求:的值.18.已知直线经过点,斜率为1.(1)求直线的方程;(2)若直线与直线:的交点在第二象限,求的取值范围.19.设数列满足(,),且,.(1)求和的值;(2)求数列的前项和.20.设数列的前n项和为,满足,,.(1)若,求数列的通项公式;(2)若,求数列的通项公式;21.某科研小组研究发现:一棵水蜜桃树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系:,且投入的肥料费用不超过5百元.此外,还需要投入其他成本(如施肥的人工费等)百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为(单位:百元).(1)求利润函数的函数关系式,并写出定义域;(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

先求出变换后的函数的解析式,求出所得函数的对称中心坐标,可得出正确选项.【详解】函数的图象沿轴向左平移个单位长度后得到函数的解析式为,令,得,因此,所得函数的图象的一个对称中心是,故选B.【点睛】本题考查图象的变换以及三角函数的对称中心,解题的关键就是求出变换后的三角函数解析式,考查分析问题和解决问题的能力,属于中等题.2、C【解析】

根据空间中垂直关系的判定和性质,平行关系的判定和性质,以及线面角的相关知识,对选项进行逐一判断即可.【详解】对A:因为底面ABCD为正方形,故ACBD,又SD底面ABCD,AC平面ABCD,故SDAC,又BD平面SBD,SD平面SBD,故AC平面SBD,又SB平面SBD,故AC.故A正确;对B:因为底面ABCD为正方形,故AB//CD,又CD平面SCD,故AB//平面SCD.故B正确.对C:由A中推导可知AC平面SBD,故取AC与BD交点为O,连接SO,如图所示:则即为所求线面角,但该三角形中边长关系不确定,故线面角的大小不定,故C错误;对D:由AC平面SBD,故取AC与BD交点为O,连接SO,则即为SA和SC与平面SBD所成的角,因为,故,故D正确.综上所述,不正确的是C.故选:C.【点睛】本题综合考查线面垂直的性质和判定,线面平行的判定,线面角的求解,属综合基础题.3、A【解析】

先将展开并化简,再根据二倍角公式,计算可得。【详解】由题得,,整理得,又为锐角,则,,解得.故选:A【点睛】本题考查两角和差公式以及二倍角公式,是基础题。4、B【解析】

逐项分析见详解.【详解】①“a平行于b所在的平面”不能推出“直线a∥直线b”,如:正方体上底面一条对角线平行于下底面,但上底面的一条对角线却不平行于下底面非对应位置的另一条对角线,故错误;②“直线l⊥平面α内所有直线”是“l⊥平面α”的定义,故正确;③“直线a、b不相交”不能推出“直线a、b为异面直线”,这里可能平行;“直线a、b为异面直线”可以推出“直线a、b不相交”,所以是必要不充分条件,故正确;④“α内存在不共线的三点到β的距离相等”不能推出“平面α∥平面β”,这里包含了平面相交的情况,“平面α∥平面β”能推出“α内存在不共线的三点到β的距离相等”,所以是必要不充分条件,故错误.故选B.【点睛】本题考查空间中平行与垂直关系的判断,难度一般.对可以利用判定定理和性质定理直接分析的问题,可直接判断;若无法直接判断的问题可采用作图法或者排除法判断.5、D【解析】

函数可以化为,设,由,则,即转化为求二次函数在上的最大值.【详解】由设,由,则.即求二次函数在上的最大值所以当,即时,函数取得最大值.故选:D【点睛】本题考查的二次型函数的最值,属于中档题.6、C【解析】

过球心作垂直圆面于.连接与圆面上一点构造出直角三角形再计算球的半径即可.【详解】如图,过球心作垂直圆面于,连接与圆面上一点.则.故球的体积为.故选:C【点睛】本题主要考查了球中构造直角三角形求解半径的方法等.属于基础题.7、A【解析】

由题得即得直线的斜率得解.【详解】由题得,所以直线的斜率为.故选:A【点睛】本题主要考查直线的斜率的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.8、D【解析】

通过化简可得,再根据,可得,利用同角三角函数可得,则答案可得.【详解】解:,又,得,即,又,且,解得,,故选:D.【点睛】本题考查三角恒等变形的化简和求值,是中档题.9、A【解析】试题分析:由题意得,直线与直线垂直,则,解得或,所以“”是“直线与直线垂直”的充分不必要条件,故选A.考点:两条直线的位置关系及充分不必要条件的判定.10、D【解析】试题分析:,,故选D.考点:点线面的位置关系.二、填空题:本大题共6小题,每小题5分,共30分。11、(2,3)【解析】

将直线方程变形为,它表示过两直线和的交点的直线系,解方程组,得上述直线恒过定点,故答案为.【方法点睛】本题主要考查待定直线过定点问题.属于中档题.探索曲线过定点的常见方法有两种:①可设出曲线方程,然后利用条件建立等量关系进行消元(往往可以化为的形式,根据求解),借助于曲线系的思想找出定点(直线过定点,也可以根据直线的各种形式的标准方程找出定点).②从特殊情况入手,先探求定点,再证明与变量无关.12、【解析】由题意,基本事件总数为3×3=9,其中满足直线y=kx+b不经过第三象限的,即满足有k=-1,b=1或k=-1,b=2两种,故所求的概率为.13、【解析】

在和在中,根据正弦定理,分别表示出.由可得等式,代入已知条件化简即可得解.【详解】在中,由正弦定理可得,则在中,由正弦定理可得,则点D为BC的中点,则所以因为,,由诱导公式可知代入上述两式可得所以故答案为:【点睛】本题考查了正弦定理的简单应用,属于基础题.14、【解析】

由三点、、共线,则有,再利用向量共线的坐标运算即可得解.【详解】解:由、、,则,,又三点、、共线,则,则,解得:,故答案为:.【点睛】本题考查了向量共线的坐标运算,属基础题.15、-【解析】

先求出cosα,再利用二倍角公式求sin2α【详解】因为α为第二象限角,若sinα=所以cosα=所以sin2α故答案为-【点睛】本题主要考查同角三角函数的平方关系,考查二倍角的正弦公式,意在考查学生对这些知识的理解掌握水平,属于基础题.16、23【解析】

直接利用数量积的坐标表示求解.【详解】由题得.故答案为23【点睛】本题主要考查平面向量的数量积的计算,意在考查学生对该知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】

求出和的取值范围,利用同角三角函数的基本关系求出和的值,然后利用两角差的余弦公式可求出的值.【详解】,则,且,,,,,,,因此,.故答案为:.【点睛】本题考查利用两角差的余弦公式求值,解题的关键就是利用已知角来表示所求角,考查计算能力,属于中等题.18、(1);(2)【解析】

(1)由条件利用用点斜式求直线的方程.(2)联立方程组求出直线与直线的交点坐标,再根据交点在第二象限,求得的取值范围.【详解】解:(1)由直线经过点,斜率为1,利用点斜式可得直线的方程为,即.(2)由,解得,故直线与直线的交点坐标为.交点在第二象限,故有,解得,即的取值范围为.【点睛】本题主要考查用点斜式求直线的方程,求直线的交点坐标,属于基础题.19、(1),;(2)【解析】

(1)由已知求得,可得,取即可求得;(2)由,得,可得数列是以为首项,以1为公差的等差数列,由此求得数列的通项公式,再由错位相减法求数列的前项和.【详解】解:(1),且,,,即.,取,得,即;(2)由,得,数列是以为首项,以为公差的等差数列,则.则.,,则,.【点睛】本题考查数列求和,训练了利用错位相减法求数列的前项和,属于中档题.20、(1);(2)【解析】

(1)根据递推公式,得到,累加即可计算出的结果;(2)分类讨论:为奇数、为偶数,然后在求和时分奇偶项分别求和即可得到对应的的通项公式.【详解】(1)因为,所以,所以上式叠加可得:,所以,又因为时符合的情况,所以;(2)因为,,所以,所以,又因为,所以,所以,因为,所以,当时,,当时,,当时,,当时,,所以.【点睛】本题考查数列的综合应用,难度较难.(1)利用递推公式求解数列通项公式时,对于的情况,一定要注意验证是否满足时的通项公式,此处决定数列通项公式是否

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论