浙江省中考数学总复习专题提升五以特殊三角形为背景的探究性问题试题_第1页
浙江省中考数学总复习专题提升五以特殊三角形为背景的探究性问题试题_第2页
浙江省中考数学总复习专题提升五以特殊三角形为背景的探究性问题试题_第3页
浙江省中考数学总复习专题提升五以特殊三角形为背景的探究性问题试题_第4页
浙江省中考数学总复习专题提升五以特殊三角形为背景的探究性问题试题_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题提升五以特殊三角形为背景的探究性问题热点解读特殊三角形的探究问题,主要会把复杂图形分解出等腰三角形、直角三角形,找相互之间的共性,从而揭示数量关系,同时又要用运动变换的思想分析问题,抓住一些不变的图形和不变的量、等量关系.以特殊三角形为背景的探究性问题是中考热点题型.母题呈现(2017·绍兴模拟)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.对点训练如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是()第1题图A.2B.3C.4D.5(2017·营口)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()第2题图A.4B.5C.6D.73.(2016·长春)感知:如图1,AD平分∠BAC,∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC.应用:如图3,四边形ABCD中,∠B=45°,∠C=135°,DB=DC=a,则AB-AC=________(用含a的代数式表示).第3题图4.(2016·孝感)感知:如图1,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明)拓展:如图2,点B、C分别在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求证:△ABE≌△CAF.应用:如图3,在等腰三角形ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为.第4题图5.如图,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.(1)试用含t的式子表示AE、AD的长;(2)如图1,在D、E运动的过程中,四边形AEFD是平行四边形,请说明理由;(3)如图2,连结DE,当t为何值时,△DEF为直角三角形?(4)如图3,将△ADE沿DE翻折得到△A′DE,试问当t为何值时,四边形AEA′D为菱形?第5题图6.(2017·大连)如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D与点A,C不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD=x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.第6题图参考答案专题提升五以特殊三角形为背景的探究性问题【母题呈现】∵△ABC是等边三角形,∴∠B=60°.∵DE∥AB,∴∠EDC=∠B=60°.∵EF⊥DE,∴∠DEF=90°.∴∠F=90°-∠EDC=30°.(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2.∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【对点训练】1.B2.B3.探究:如图2中,作DE⊥AB于E,DF⊥AC于F,∵DA平分∠BAC,∴DE=DF,∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠B=∠FCD,在△DFC和△DEB中,∵∠F=∠DEB,∠FCD=∠B,DF=DE,∴△DFC≌△DEB,∴DC=DB.应用:如图3,连结AD,作DE⊥AB于E,DF⊥AC于F,∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠B=∠FCD,在△DFC和△DEB中,∵∠F=∠DEB,∠FCD=∠B,DC=DB,∴△DFC≌△DEB,∴DF=DE,CF=BE,在Rt△ADF和Rt△ADE中,∵AD=AD,DE=DF,∴△ADF≌△ADE,∴AF=AE,∴AB-AC=(AE+BE)-(AF-CF)=2BE,在Rt△DEB中,∵∠DEB=90°,∠B=∠EDB=45°,BD=a,∴BE=eq\f(\r(2),2)a,∴AB-AC=eq\r(2)a.故答案为:eq\r(2)a.第3题图4.拓展:∵∠1=∠2,∴∠BEA=∠AFC,∵∠1=∠ABE+∠BAE,∠BAE+∠DAC=∠BAC,∠1=∠BAC,∴∠BAC=∠ABE+∠BAE,∴∠DAC=∠ABE,∴eq\b\lc\{(\a\vs4\al\co1(∠AEB=∠AFC,,∠ABE=∠DAC,,AB=AC,))∴△ABE≌△CAF(AAS).应用:∵在等腰三角形ABC中,AB=AC,CD=2BD,∴△ABD与△ADC等高,底边比值为1∶2,∴△ABD与△ADC的面积比为1∶2,∵△ABC的面积为9,∴△ABD与△ADC面积分别为3,6;∵∠1=∠2,∴∠BEA=∠AFC,∵∠1=∠ABE+∠BAE,∠BAE+∠DAC=∠BAC,∠1=∠BAC,∴∠BAC=∠ABE+∠BAE,∴∠DAC=∠ABE,∴eq\b\lc\{(\a\vs4\al\co1(∠AEB=∠AFC,,∠ABE=∠DAC,,AB=AC,))∴△ABE≌△CAF(AAS),∴△ABE与△CAF面积相等,∴△ABE与△CDF的面积之和为△ADC的面积,∴△ABE与△CDF的面积之和为6,故答案为:6.5.(1)AE=tcm,AD=(12-2t)cm.(2)∵DF⊥BC,∠C=30°,∴DF=eq\f(1,2)CD=eq\f(1,2)×2t=t.∵AE=t,∴DF=AE.∵∠ABC=90°,DF⊥BC,∴DF∥AE.∴四边形AEFD是平行四边形.(3)①显然∠DFE<90°.②如图1,当∠EDF=90°时,四边形EBFD为矩形,此时AE=eq\f(1,2)AD,∴t=eq\f(1,2)(12-2t).∴t=3.③如图2,当∠DEF=90°时,此时∠ADE=90°,∴∠AED=90°-∠A=30°.∴AD=eq\f(1,2)AE.∴12-2t=eq\f(1,2)t.∴t=eq\f(24,5).综上:当t=3秒或t=eq\f(24,5)秒时,△DEF为直角三角形.(4)如图3,若四边形AEA′D为菱形,则AE=AD.∴t=12-2t.∴t=4.∴当t=4时,四边形AEA′D为菱形.第5题图6.(1)如图1,∵∠EDE′=∠C=90°,∴∠ADP+∠CDE=90°,∠CDE+∠DEC=90°,∴∠ADP=∠DEC.(2)如图1,当C′E′与AB相交于Q时,即eq\f(6,5)<x≤eq\f(12,7)时,过P作MN∥DC′,设∠B=α,∴MN⊥AC,四边形DC′MN是矩形,∴PM=PQ·cosα=eq\f(4,5)y,PN=eq\f(4,3)×eq\f(1,2)(3-x),∴eq\f(2,3)(3-x)+eq\f(4,5)y=x,∴y=eq\f(25,12)x-eq\f(5,2),当DC′交AB于Q时,即eq\f(12,7)<x<3时,如图2,作PM⊥AC于M,PN⊥DQ于N,则四边形PMDN是矩形,∴PN=DM,∵DM=eq\f(1,2)(3-x),PN=PQ·sinα=eq\f(3,5)y,∴eq\f(1,2)(3-x)=eq\f(3,5)y,∴y=-eq\f(5,6)x+e

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论