江西省抚州市九校2024届数学高一下期末质量检测试题含解析_第1页
江西省抚州市九校2024届数学高一下期末质量检测试题含解析_第2页
江西省抚州市九校2024届数学高一下期末质量检测试题含解析_第3页
江西省抚州市九校2024届数学高一下期末质量检测试题含解析_第4页
江西省抚州市九校2024届数学高一下期末质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省抚州市九校2024届数学高一下期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则下列正确的是()A. B.C. D.2.在中,,BC边上的高等于,则()A. B. C. D.3.已知平面向量,的夹角为,,,则向的值为()A.-2 B. C.4 D.4.如图,函数与坐标轴的三个交点P,Q,R满足,,M为QR的中点,,则A的值为()A. B. C. D.5.我国古代数学名著《九章算术》第六章“均输”中有这样一个问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”(注:“均输”即按比例分配,此处是指五人所得成等差数列;“钱”是古代的一种计量单位),则分得最少的一个得到()A.钱 B.钱 C.钱 D.1钱6.由小到大排列的一组数据,,,,,其中每个数据都小于,那么对于样本,,,,,的中位数可以表示为()A. B. C. D.7.设有直线和平面,则下列四个命题中,正确的是()A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,l∥β,则α∥βC.若α⊥β,m⊂α,则m⊥β D.若α⊥β,m⊥β,m⊄α,则m∥α8.已知函数在区间上是增函数,且在区间上恰好取得一次最大值为2,则的取值范围是()A. B. C. D.9.已知等比数列的首项,公比,则()A. B. C. D.10.若不等式对任意,恒成立,则实数的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.我国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则该人第一天走的路程为__________里.12.已知,,两圆和只有一条公切线,则的最小值为________13.已知且,则________14.已知数列是等比数列,公比为,且,,则_________.15.已知数列的前n项和,则___________.16.若,,,则M与N的大小关系为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的通项公式为.(1)求这个数列的第10项;(2)在区间内是否存在数列中的项?若有,有几项?若没有,请说明理由.18.设公差不为0的等差数列中,,且构成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)若数列的前项和满足:,求数列的前项和.19.已知数列为等差数列,为前项和,,(1)求的通项公式;(2)设,比较与的大小;(3)设函数,,求,和数列的前项和.20.已知函数.(1)当时,解不等式;(2)若,的解集为,求的最小値.21.某机构通过对某企业今年的生产经营情况的调查,得到每月利润(单位:万元)与相应月份数的部分数据如表:14712229244241196(1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述与的变化关系,并说明理由,,,;(2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由不等式的性质对四个选项逐一判断,即可得出正确选项,错误的选项可以采用特值法进行排除.【详解】A选项不正确,因为若,,则不成立;B选项不正确,若时就不成立;C选项不正确,同B,时就不成立;D选项正确,因为不等式的两边加上或者减去同一个数,不等号的方向不变,故选D.【点睛】本题主要考查不等关系和不等式的基本性质,求解的关键是熟练掌握不等式的运算性质.2、C【解析】试题分析:设,故选C.考点:解三角形.3、C【解析】

通过已知条件,利用向量的数量积化简求解即可.【详解】平面向量,的夹角为,或,则向量.故选:【点睛】本题考查向量数量积公式,属于基础题.4、D【解析】

用周期表示出点坐标,从而又可得点坐标,再求出点坐标后利用求得,得.【详解】记函数的周期,则,因为,∴,是中点,则,∴,解得,∴,由得,∵,∴,,,∴,故选:D.【点睛】本题考查求三角函数的解析式,掌握正弦函数的图象与性质是解题关键.5、B【解析】

设所成等差数列的首项为,公差为,利用等差数列前项和公式及通项公式列出方程组,求出首项和公差,进而得出答案.【详解】由题意五人所分钱成等差数列,设得钱最多的为,则公差.所以,则.又,即则,分得最少的一个得到.故选:B【点睛】本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.6、C【解析】

根据不等式的基本性质,对样本数据按从小到大排列为,取中间的平均数.【详解】,,则该组样本的中位数为中间两数的平均数,即.【点睛】考查基本不等式性质运用和中位数的定义.7、D【解析】

在A中,m与n相交、平行或异面;在B中,α与β相交或平行;在C中,m⊥β或m∥β或m与β相交;在D中,由直线与平面垂直的性质与判定定理可得m∥α.【详解】由直线m、n,和平面α、β,知:对于A,若m∥α,n∥α,则m与n相交、平行或异面,故A错误;对于B,若m⊂α,n⊂α,m∥β,n∥β,则α∥β或α与β相交,故B错误;对于中,若α⊥β,α⊥β,m⊂α,则m⊥β或m∥β或m与β相交,故C错误;对于D,若α⊥β,m⊥β,m⊄α,则由直线与平面垂直的性质与判定定理得m∥α,故D正确.故选D.【点睛】本题考查了命题真假的判断问题,考查了空间线线、线面、面面的位置关系的判定定理及推论的应用,体现符号语言与图形语言的相互转化,是中档题.8、D【解析】

化简函数为正弦型函数,根据题意,利用正弦函数的图象与性质求得的取值范围.【详解】解:函数则函数在上是含原点的递增区间;又因为函数在区间上是单调递增,则,得不等式组又因为,所以解得.又因为函数在区间上恰好取得一次最大值为2,可得,所以,综上所述,可得.故选:D.【点睛】本题主要考查了正弦函数的图像和性质应用问题,也考查了三角函数的灵活应用,属于中档题.9、B【解析】

由等比数列的通项公式可得出.【详解】解:由已知得,故选:B.【点睛】本题考查等比数列的通项公式的应用,是基础题.10、B【解析】∵不等式对任意,恒成立,∴,∵,当且仅当,即时取等号,∴,∴,∴,∴实数的取值范围是,故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、192【解析】设每天走的路程里数为由题意知是公比为的等比数列∵∴∴故答案为12、9【解析】

两圆只有一条公切线,可以判断两圆是内切关系,可以得到一个等式,结合这个等式,可以求出的最小值.【详解】,圆心为,半径为2;,圆心为,半径为1.因为两圆只有一条公切线,所以两圆是内切关系,即,于是有(当且仅当取等号),因此的最小值为9.【点睛】本题考查了圆与圆的位置关系,考查了基本不等式的应用,考查了数学运算能力.13、【解析】

根据数列极限的方法求解即可.【详解】由题,故.又.故.故.故答案为:【点睛】本题主要考查了数列极限的问题,属于基础题型.14、.【解析】

先利用等比中项的性质计算出的值,然后由可求出的值.【详解】由等比中项的性质可得,得,所以,,,故答案为.【点睛】本题考查等比数列公比的计算,充分利用等比中项和等比数列相关性质的应用,可简化计算,属于中等题.15、17【解析】

根据所给的通项公式,代入求得,并由代入求得.即可求得的值.【详解】数列的前n项和,则,而,,所以,则,故答案为:.【点睛】本题考查了数列前n项和通项公式的应用,递推法求数列的项,属于基础题.16、【解析】

根据自变量的取值范围,利用作差法即可比较大小.【详解】,,,所以当时,所以,即,故答案为:.【点睛】本题考查了作差法比较整式的大小,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)只有一项【解析】

(1)根据通项公式直接求解(2)根据条件列不等式,解得结果【详解】解:(1);(2)解不等式得,因为为正整数,所以,因此在区间内只有一项.【点睛】本题考查数列通项公式及其应用,考查基本分析求解能力,属基础题18、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)根据条件列方程解得公差,再根据等差数列通项公式得结果,(Ⅱ)先根据和项求通项,再根据错位相减法求和.【详解】(Ⅰ)因为构成等比数列,所以(0舍去)所以(Ⅱ)当时,当时,,相减得所以即【点睛】本题考查等差数列通项公式以及错位相减法求和,考查基本分析求解能力,属中档题.19、(1);(2);(3),,【解析】

(1)利用基本元的思想,将已知转化为的形式列方程组,解方程组求得的值,从而求得数列的通项公式.(2)利用裂项求和法求得表达式,判断出,利用对数函数的性质得到,由此得到.(3)首先求得,当时,根据的表达式,求得的表达式.利用分组求和法求得当时的表达式,并根据的值求得的分段表达式.【详解】(1)为等差数列,,得,∴(2)∵,∴,又,∴.(3)由分段函数,可以得到:,,当时,,故当时,,又符合上式所以.【点睛】本小题主要考查等差数列基本量的计算,考查裂项求和法、分组求和法,考查运算求解能力,属于中档题.20、(1)或;(2)最小值为.【解析】

(1)由一元二次不等式的解法即可求得结果;(2)由题的根即为,,根据韦达定理可判断,同为正,且,从而利用基本不等式的常数代换求出的最小值.【详解】(1)当时,不等式,即为,可得,即不等式的解集为或.(2)由题的根即为,,故,,故,同为正,则,当且仅当,等号成立,所以的最小值为.【点睛】本题考查一元二次不等式的解法和基本不等式的知识,考查逻辑推理能力和计算能力,属中档题.21、(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论