2023-2024学年福建省云霄立人学校高一数学第二学期期末教学质量检测模拟试题含解析_第1页
2023-2024学年福建省云霄立人学校高一数学第二学期期末教学质量检测模拟试题含解析_第2页
2023-2024学年福建省云霄立人学校高一数学第二学期期末教学质量检测模拟试题含解析_第3页
2023-2024学年福建省云霄立人学校高一数学第二学期期末教学质量检测模拟试题含解析_第4页
2023-2024学年福建省云霄立人学校高一数学第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年福建省云霄立人学校高一数学第二学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,则点在直线上的概率为()A. B. C. D.2.某个命题与自然数有关,且已证得“假设时该命题成立,则时该命题也成立”.现已知当时,该命题不成立,那么()A.当时,该命题不成立 B.当时,该命题成立C.当时,该命题不成立 D.当时,该命题成立3.已知集,集合,则A.(-2,-1) B.(-1,0) C.(0,2) D.(-1,2)4.(2018年天津卷文)设变量x,y满足约束条件则目标函数的最大值为A.6 B.19 C.21 D.455.已知均为锐角,,则=A. B. C. D.6.经过两条直线和的交点,且垂直于直线的直线方程为()A. B. C. D.7.已知,,,若,则等于()A. B. C. D.8.在等差数列an中,a1+a2A.2n B.2n+1 C.2n-1 D.2n+29.已知,下列不等式中必成立的一个是()A. B. C. D.10.等差数列的前项和为,,,则()A.21 B.15 C.12 D.9二、填空题:本大题共6小题,每小题5分,共30分。11.在等差数列中,若,且它的前n项和有最大值,则当取得最小正值时,n的值为_______.12.已知函数在时取得最小值,则________.13.计算:______.14.已知数列{an}、{bn}都是公差为1的等差数列,且a1+b1=515.已知双曲线:的右顶点为,以为圆心,为半径作圆,圆与双曲线的一条渐近线于交、两点,若,则的离心率为__________.16.正方形和内接于同一个直角三角形ABC中,如图所示,设,若两正方形面积分别为=441,=440,则=______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的最小正周期及单调递减区间;(2)若,且,求的值.18.已知平面向量满足:(1)求与的夹角;(2)求向量在向量上的投影.19.如图,已知三棱柱的侧棱垂直于底面,,,点,分别为和的中点.(1)若,求三棱柱的体积;(2)证明:平面;(3)请问当为何值时,平面,试证明你的结论.20.已知圆的半径是2,圆心为.(1)求圆的方程;(2)若点是圆上的动点,点在轴上,的最大值等于7,求点的坐标.21.已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)若,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

先求出点)的个数,然后求出点在直线上的个数,最后根据古典概型求出概率.【详解】点的个数为,其中点三点在直线上,所以点在直线上的概率为,故本题选B.【点睛】本题考查了古典概型概率的计算公式,考查了数学运算能力.2、C【解析】

写出命题“假设时该命题成立,则时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断.【详解】由逆否命题可知,命题“假设时该命题成立,则时该命题也成立”的逆否命题为“假设当时该命题不成立,则当时该命题也不成立”,由于当时,该命题不成立,则当时,该命题也不成立,故选:C.【点睛】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.3、D【解析】

根据函数的单调性解不等式,再解绝对值不等式,最后根据交集的定义求解.【详解】由得,由得,所以,故选D.【点睛】本题考查指数不等式和绝对值不等式的解法,集合的交集.指数不等式要根据指数函数的单调性求解.4、C【解析】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.本题选择C选项.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.5、A【解析】因为,所以,又,所以,则;因为且,所以,又,所以;则====;故选A.点睛:三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.6、D【解析】

首先求出两条直线的交点坐标,再根据垂直求出斜率,点斜式写方程即可.【详解】有题知:,解得:,交点.直线的斜率为,所求直线斜率为.所求直线为:,即.故选:D【点睛】本题主要考查如何求两条直线的交点坐标,同时考查了两条直线的位置关系,属于简单题.7、A【解析】

根据向量的坐标运算法则,依据题意列出等式求解.【详解】由题知:,,,因为,所以,故,故选:A.【点睛】本题考查向量的坐标运算,属于基础题.8、C【解析】

直接利用等差数列公式解方程组得到答案.【详解】aaa1故答案选C【点睛】本题考查了等差数列的通项公式,属于基础题型.9、B【解析】

根据不等式的性质,对选项逐一分析,由此确定正确选项.【详解】对于A选项,由于,不等号方向不相同,不能相加,故A选项错误.对于B选项,由于,所以,而,根据不等式的性质有:,故B选项正确.对于C选项,,而两个数的正负无法确定,故无法判断的大小关系,故C选项错误.对于D选项,,而两个数的正负无法确定,故无法判断的大小关系,故D选项错误.故选:B.【点睛】本小题主要考查根据不等式的性质判断不等式是否成立,属于基础题.10、B【解析】依题意有,解得,所以.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】试题分析:因为等差数列前项和有最大值,所以公差为负,所以由得,所以,=,所以当时,取到最小正值.考点:1、等差数列性质;2、等差数列的前项和公式.【方法点睛】求等差数列前项和的最值常用的方法有:(1)先求,再利用或求出其正负转折项,最后利用单调性确定最值;(2)利用性质求出其正负转折项,便可求得前项和的最值;(3)利用等差数列的前项和(为常数)为二次函数,根据二次函数的性质求最值.12、【解析】试题分析:因为,所以,当且仅当即,由题意,解得考点:基本不等式13、【解析】

在分式的分子和分母中同时除以,然后利用常见的数列极限可计算出所求极限值.【详解】.故答案为:.【点睛】本题考查数列极限的计算,熟悉一些常见数列极限是解题的关键,考查计算能力,属于基础题.14、1【解析】

根据等差数列的通项公式把abn转化到a1+(bn-1)【详解】S=[=[=na1=4n+n(n-1)故答案为:12【点睛】本题主要考查等差数列通项公式和前n项和的应用,利用分组求和法是解决本题的关键.15、【解析】如图所示,由题意可得|OA|=a,|AN|=|AM|=b,∵∠MAN=60°,∴|AP|=b,∴|OP|=.设双曲线C的一条渐近线y=x的倾斜角为θ,则tanθ=.又tanθ=,∴,解得a2=3b2,∴e=.答案:点睛:求双曲线的离心率的值(或范围)时,可将条件中提供的双曲线的几何关系转化为关于双曲线基本量的方程或不等式,再根据和转化为关于离心率e的方程或不等式,通过解方程或不等式求得离心率的值(或取值范围).16、【解析】

首先根据在正方形S1和S2内,S1=441,S2=440,分别求出两个正方形的边长,然后分别表示出AF、FC、AM、MC的长度,最后根据AF+FC=AM+MC,列出关于α的三角函数等式,求出sin2α的值即可.【详解】因为S1=441,S2=440,所以FD21,MQ=MN,因为AC=AF+FC2121,AC=AM+MCMNcosαcosα,所以:21cosα,整理,可得:(sinαcosα+1)=21(sinα+cosα),两边平方,可得110sin22α﹣sin2α﹣1=0,解得sin2α或sin2α(舍去),故sin2α.故答案为:.【点睛】本题主要考查了三角函数的求值问题,考查了正方形、直角三角形的性质,属于中档题,解答此题的关键是分别表示出AF、FC、AM、MC的长度,最后根据AF+FC=AM+MC,列出关于α的三角函数等式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最小正周期为,单调递减区间为(2).【解析】

(1)利用二倍角降幂公式和辅助角公式将函数的解析式化为,利用周期公式可得出函数的最小正周期,然后解不等式可得出函数的单调递减区间;(2)由可得出角的值,再利用两角和的正切公式可计算出的值.【详解】(1).函数的最小正周期为,令,解得.所以,函数的单调递减区间为;(2),即,,.,故,因此.【点睛】本题考查三角函数基本性质,考查两角和的正切公式求值,解题时要利用三角恒等变换思想将三角函数的解析式化简,利用正弦、余弦函数的性质求解,考查运算求解能力,属于中等题.18、(1);(2).【解析】

(1)由题,先求得的大小,再根据数量积的公式,可得与的夹角;(2)先求得的模长,再直接利用向量几何意义的公式,求得结果即可.【详解】(1)∵,∴,又∵,∴,∴,∴(2)∵,∴∴向量在向量上的投影为【点睛】本题考查了向量的知识,熟悉向量数量积的知识点和几何意义是解题的关键所在,属于中档题.19、(1)4;(2)证明见解析;(3)时,平面,证明见解析.【解析】

(1)直接根据三棱柱体积计算公式求解即可;(2)利用中位线证明面面平行,再根据面面平行的性质定理证明平面;(3)首先设为,利用平面列出关于参数的方程求解即可.【详解】(1)∵三棱柱的侧棱垂直于底面,且,,,∴由三棱柱体积公式得:;(2)证明:取的中点,连接,,∵,分别为和的中点,∴,,∵平面,平面,∴平面,平面,又,∴平面平面,∵平面,∴平面;(3)连接,设,则由题意知,,∵三棱柱的侧棱垂直于底面,∴平面平面,∵,∴,又点是的中点,∴平面,∴,要使平面,只需即可,又∵,∴,∴,即,∴,则时,平面.【点睛】本题考查了三棱柱的体积公式,线面平行的证明,利用线面垂直求参数,属于难题.20、(1);(2)或.【解析】

(1)直接根据圆的标准式方程,写出圆的方程即可;(2)设.由等于1.即,解得即可.【详解】解:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论