版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年辽宁省葫芦岛市辽宁实验中学东戴河分校高一下数学期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数f(x)是定义在R上的奇函数,当x<0时,f(x)=-x2-5xA.(-1,2) B.(-1,3) C.(-2,3) D.(-2,4)2.某学校高一、高二年级共有1800人,现按照分层抽样的方法,抽取90人作为样本进行某项调查.若样本中高一年级学生有42人,则该校高一年级学生共有()A.420人 B.480人 C.840人 D.960人3.某同学用收集到的6组数据对(xi,yi)(i=1,2,3,4,5,6)制作成如图所示的散点图(点旁的数据为该点坐标),并由最小二乘法计算得到回归直线l的方程:x,相关指数为r.现给出以下3个结论:①r>0;②直线l恰好过点D;③1;其中正确的结论是A.①② B.①③C.②③ D.①②③4.将正整数排列如下:123456789101112131415……则图中数出现在()A.第行列 B.第行列 C.第行列 D.第行列5.一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是A.两次都中靶B.至少有一次中靶C.两次都不中靶D.只有一次中靶6.过点作圆的切线,且直线与平行,则与间的距离是()A. B. C. D.7.中,若,则的形状是()A.等腰三角形 B.等边三角形C.锐角三角形 D.直角三角形8.下图是500名学生某次数学测试成绩(单位:分)的频率分布直方图,则这500名学生中测试成绩在区间[90,100)中的学生人数是A.60 B.55 C.45 D.509.正六边形的边长为,以顶点为起点,其他顶点为终点的向量分别为;以顶点为起点,其他顶点为终点的向量分别为.若分别为的最小值、最大值,其中,则下列对的描述正确的是()A. B. C. D.10.已知角的终边过点,则的值为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,长方体中,,,,与相交于点,则点的坐标为______________.12.在平面直角坐标系中,从五个点:中任取三个,这三点能构成三角形的概率是_______.13.在等比数列中,,,则______________.14.设为数列的前项和,若,则数列的通项公式为__________.15.在中,已知,则____________.16.函数的递增区间是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,且(1)求的定义域.(2)判断的奇偶性,并说明理由.18.在中,内角,,所对的边分别为,,.若.(1)求角的度数;(2)当时,求的取值范围.19.如图,四面体中,,,为的中点.(1)证明:;(2)已知是边长为2正三角形.(Ⅰ)若为棱的中点,求的大小;(Ⅱ)若为线段上的点,且,求四面体的体积的最大值.20.在如图所示的几何体中,D是AC的中点,EF∥DB.(Ⅰ)已知AB=BC,AE=EC.求证:AC⊥FB;(Ⅱ)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.21.在中,,,的对边分别为,,,已知.(1)判断的形状;(2)若,,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据题意,结合函数的奇偶性分析可得函数的解析式,作出函数图象,结合不等式和二次函数的性质以及函数图象中的递减区间,分析可得答案.【详解】根据题意,设x>0,则-x<0,所以f(-x)=-x因为f(x)是定义在R上的奇函数,所以f(-x)=-x所以f(x)=x即x≥0时,当x<0时,f(x)=-x则f(x)的图象如图:在区间(-5若f(x)-f(x-1)<0,即f(x-1)>f(x),又由x-1<x,且f(-3)=f(-2),f(2)=f(3),必有x-1>-3x<3时,f(x)-f(x-1)<0解得-2<x<3,因此不等式的解集是(-2,3),故选C.【点睛】本题主要考查了函数奇偶性的应用,利用函数的奇偶性求出函数的解析式,根据图象解不等式是本题的关键,属于难题.2、C【解析】
先由样本容量和总体容量确定抽样比,用高一年级抽取的人数除以抽样比即可求出结果.【详解】由题意需要从1800人中抽取90人,所以抽样比为,又样本中高一年级学生有42人,所以该校高一年级学生共有人.故选C【点睛】本题主要考查分层抽样,先确定抽样比,即可确定每层的个体数,属于基础题型.3、A【解析】由图可知这些点分布在一条斜率大于零的直线附近,所以为正相关,即相关系数因为所以回归直线的方程必过点,即直线恰好过点;因为直线斜率接近于AD斜率,而,所以③错误,综上正确结论是①②,选A.4、B【解析】
计算每行首个数字的通项公式,再判断出现在第几列,得到答案.【详解】每行的首个数字为:1,2,4,7,11…利用累加法:计算知:数出现在第行列故答案选B【点睛】本题考查了数列的应用,计算首数字的通项公式是解题的关键.5、A【解析】
利用对立事件、互斥事件的定义直接求解.【详解】一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是两次都中靶.故选:A.【点睛】本题考查互事件的判断,是中档题,解题时要认真审题,注意对立事件、互斥事件的定义的合理运用.6、D【解析】由题意知点在圆C上,圆心坐标为,所以,故切线的斜率为,所以切线方程为,即.因为直线l与直线平行,所以,解得,所以直线的方程是-4x+3y-8=0,即4x-3y+8=0.所以直线与直线l间的距离为.选D.7、D【解析】
根据正弦定理,得到,进而得到,再由两角和的正弦公式,即可得出结果.【详解】因为,所以,所以,即,所以,又因此,所以,即三角形为直角三角形.故选D【点睛】本题主要考查三角形形状的判断,熟记正弦定理即可,属于常考题型.8、D【解析】分析:根据频率分布直方图可得测试成绩落在中的频率,从而可得结果.详解:由频率分布直方图可得测试成绩落在中的频率为,所以测试成绩落在中的人数为,,故选D.点睛:本题主要考查频率分布直方图的应用,属于中档题.直观图的主要性质有:(1)直方图中各矩形的面积之和为;(2)组距与直方图纵坐标的乘积为该组数据的频率.9、A【解析】
利用向量的数量积公式,可知只有,其余数量积均小于等于0,从而得到结论.【详解】由题意,以顶点A为起点,其他顶点为终点的向量分别为,以顶点D为起点,其他顶点为终点的向量分别为,则利用向量的数量积公式,可知只有,其余数量积均小于等于0,又因为分别为的最小值、最大值,所以,故选A.【点睛】本题主要考查了向量的数量积运算,其中解答中熟记向量的数量积的运算公式,分析出向量数量积的正负是关键,着重考查了分析解决问题的能力,属于中档试题.10、B【解析】
由三角函数的广义定义可得的值.【详解】因为,故选B.【点睛】本题考查三角函数的概念及定义,考查基本运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
易知是的中点,求出的坐标,根据中点坐标公式求解.【详解】可知,,由中点坐标公式得的坐标公式,即【点睛】本题考查空间直角坐标系和中点坐标公式,空间直角坐标的读取是易错点.12、【解析】
分别算出两点间的距离,共有种,构成三角形的条件为任意两边之和大于第三边,所以在这10种中找出满足条件的即可.【详解】由两点之间的距离公式,得:,,,任取三点有:,共10种,能构成三角形的有:,共6种,所求概率为:.【点睛】构成三角形必须满足任意两边之和大于第三边,则n个点共有个线段,找出满足条件的即可,属于中等难度题目.13、1【解析】
根据已知两项求出数列的公比,然后根据等比数列的通项公式进行求解即可.【详解】∵a1=1,a5=4∴公比∴∴该等比数列的通项公式a3=11=1故答案为:1.【点睛】本题主要考查了等比数列的通项公式,一般利用基本量的思想,属于基础题.14、,【解析】
令时,求出,再令时,求出的值,再检验的值是否符合,由此得出数列的通项公式.【详解】当时,,当时,,不合适上式,当时,,不合适上式,因此,,.故答案为,.【点睛】本题考查利用前项和求数列的通项,考查计算能力,属于中等题.15、84【解析】
根据余弦定理以及同角公式求得,再根据面积公式可得答案.【详解】由余弦定理可得,又,所以,所以.故答案为:84【点睛】本题考查了余弦定理,考查了同角公式,考查了三角形的面积公式,属于基础题.16、;【解析】
先利用辅助角公式对函数化简,由可求解.【详解】函数,由,可得,所以函数的单调增区间为.故答案为:【点睛】本题考查了辅助角公式、正弦函数的图像与性质,需熟记公式与性质,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)偶函数,理由见解析.【解析】
(1)根据对数的真数大于零可求得和的定义域,取交集可得定义域;(2)整理可得,验证得,得到函数为偶函数.【详解】(1)令得:定义域为令得:定义域为的定义域为(2)由题意得:,为定义在上的偶函数【点睛】本题考查函数定义域的求解、奇偶性的判断;求解函数定义域的关键是明确对数函数要求真数必须大于零,且需保证构成函数的每个部分都有意义.18、(1);(2).【解析】
(1)根据余弦定理即可解决.(2)根据向量的三角形法则即可解决.【详解】(1)因为,所以得,所以,所以,因为所以;(2)取的中点,则,,所以所以,从而由平行四边形性质有故.【点睛】本题主要考查了余弦定理以及向量的三角形法则,其中第二问用了完全平方以及加减消元的思想,是本题的一个难点.解决本题的关键是画一个三角形结合三角形进行分析.19、(1)证明见解析;(2)(Ⅰ);(Ⅱ)【解析】
(1)取中点,连接,通过证明,证得平面,由此证得.(2)(I)通过证明,证得平面,由此证得,利用“直斜边的中线等于斜边的一半”这个定理及其逆定理,证得.(II)利用求得四面体的体积的表达式,结合基本不等式求得四面体的体积的最大值.【详解】(1)取的中点,所以,所以.又因为,所以,又,所以面,所以.(2)(Ⅰ)由题意得,在正三角形中,,又因为,且,所以面,所以.∵为棱的中点,∴,在中,为的中点,.∴(Ⅱ),四面体的体积,又因为,即,所以等号当且仅当时成立,此时.故所求的四面体的体积的最大值为.【点睛】本小题主要考查线线垂直的证明,考查线面垂直的证明,考查直角三角形的判定,考查三棱锥体积的最大值的求法,考查基本不等式的运用,考查空间想象能力和逻辑推理能力,属于中档题.20、(Ⅰ)证明:见解析;(Ⅱ)见解析.【解析】试题分析:(Ⅰ)根据,知与确定一个平面,连接,得到,,从而平面,证得.(Ⅱ)设的中点为,连,在,中,由三角形中位线定理可得线线平行,证得平面平面,进一步得到平面.试题解析:(Ⅰ)证明:因,所以与确定平面.连接,因为为的中点,所以,同理可得.又,所以平面,因为平面,所以.(Ⅱ)设的中点为,连.在中,因为是的中点,所以,又,所以.在中,因为是的中点,所以,又,所以平面平面,因为平面,所以平面.【考点】平行关系,垂直关系【名师点睛】本题主要考查直线与直线垂直、直线与平面平行.此类题目是立体几何中的基本问题.解答本题,关键在于能利用已知的直线与直线、直线与平面、平面与平面的位置关系,通过严密推理,给出规范的证明.本题能较好地考查考生的空间想象能力、逻辑推理能力及转化与化归思想等.21、(1)为直角三角形或等腰三角形(2)【解析】
(1)由正弦定理和题设条件,得,再利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年试用期转正工作总结经典版(2篇)
- 打眼工瓦斯防治岗位责任制模版(3篇)
- 公民道德建设月活动实施方案(2篇)
- 用工合同范例 cdr
- 租地种苗木合同模板
- 招商外包企业合同模板
- 年度IT解决方案提供复杂合同04
- 二零二四年度绿化工程及养护合同
- 2024年度光纤通信网络建设与维护合同
- 张拉压浆工安全操作规程模版(2篇)
- GB/T 44831-2024皮肤芯片通用技术要求
- 2024年房地产开发建筑承包合同
- 2024年廉洁合作原则声明书
- 《建筑外墙外保温系统修缮标准 JGJ376-2015》
- HG-T 2006-2022 热固性和热塑性粉末涂料
- 2.3.2《抛物线的简单几何性质》省公开课一等奖全国示范课微课金奖课件
- 城市综合体消防技术标准 DG-TJ08-2408-2022
- 医疗器械(耗材)项目投标服务投标方案(技术方案)
- 2024年江苏省港口集团招聘笔试参考题库含答案解析
- 国家开放大学电大本科《理工英语4》期末题库及答案(试卷号:1388)
- 信用管理师(三级)理论考试题库(300题)
评论
0/150
提交评论