版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省衡水市第十三中学2024年高一下数学期末教学质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设x,y满足约束条件2x-y+2≥0,8x-y-4≤0,x≥0,y≥0,若目标函数z=abx+y(a,A.2 B.4 C.6 D.82.把一个已知圆锥截成个圆台和一个小圆锥,已知圆台的上、下底面半径之比为,母线长为,则己知圆锥的母线长为().A. B. C. D.3.函数(其中,)的部分图象如图所示、将函数的图象向左平移个单位长度,得到的图象,则下列说法正确的是()A.函数为奇函数B.函数的单调递增区间为C.函数为偶函数D.函数的图象的对称轴为直线4.直线与圆相交于M,N两点,若.则的取值范围是()A. B. C. D.5.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=(弦矢+矢矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为,弦长为米的弧田,其实际面积与按照上述经验公式计算出弧田的面积之间的误差为()平方米(其中,)A.14 B.16 C.18 D.206.若,则()A.0 B.-1 C.1或0 D.0或-17.已知在角终边上,若,则()A. B.-2 C.2 D.8.函数y=sin2x的图象可由函数A.向左平移π3B.向左平移π6C.向右平移π3D.向右平移π69.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是B.结余最高的月份是月份C.与月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元10.已知点在正所确定的平面上,且满足,则的面积与的面积之比为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,角所对的边分别为,下列命题正确的是_____________.①总存在某个内角,使得;②存在某钝角,有;③若,则的最小角小于.12.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.13.数列中,如果存在使得“,且”成立(其中,),则称为的一个“谷值”。若且存在“谷值”则实数的取值范围是__________.14.如图,矩形中,,,是的中点,将沿折起,使折起后平面平面,则异面直线和所成的角的余弦值为__________.15.如图,半径为的扇形的圆心角为,点在上,且,若,则__________.16.设函数满足,当时,,则=________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.从两个班中各随机抽取10名学生,他们的数学成绩如下,通过作茎叶图,分析哪个班学生的数学学习情况更好一些.甲班76748296667678725268乙班8684627678928274888518.已知函数.(1)求的最小正周期;(2)求的单调增区间;(3)若,求的最大值与最小值.19.如图所示,是正三角形,线段和都垂直于平面,设,,且为的中点.(1)求证:平面;(2)求平面与平面所成的较小二面角的大小20.如右图,某货轮在A处看灯塔B在货轮的北偏东75°,距离为nmile,在A处看灯塔C在货轮的北偏西30°,距离为nmile,货轮由A处向正北航行到D处时,再看灯塔B在北偏东120°,求:(1)A处与D处的距离;(2)灯塔C与D处的距离.21.已知数列的前n项和为(),且满足,().(1)求证是等差数列;(2)求数列的通项公式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
画出不等式组对应的平面区域,平移动直线至1,4时z有最大值8,再利用基本不等式可求a+b的最小值.【详解】原不等式组表示的平面区域如图中阴影部分所示,当直线z=abx+y(a,b>0)过直线2x-y+2=0与直线8x-y-4=0的交点1,4时,目标函数z=abx+y(a,即ab=4,所以a+b≥2ab=4,当且仅当a=b=2时,等号成立.所以【点睛】二元一次不等式组的条件下的二元函数的最值问题,常通过线性规划来求最值,求最值时往往要考二元函数的几何意义,比如3x+4y表示动直线3x+4y-z=0的横截距的三倍,而y+2x-1则表示动点Px,y与2、B【解析】
设圆锥的母线长为,根据圆锥的轴截面三角形的相似性,通过圆台的上、下底面半径之比为来求解.【详解】设圆锥的母线长为,因为圆台的上、下底面半径之比为,所以,解得.故选:B【点睛】本题主要考查了旋转体轴截面中的比例关系,还考查了运算求解的能力,属于基础题.3、B【解析】
本题首先可以根据题目所给出的图像得出函数的解析式,然后根据三角函数平移的相关性质以及函数的解析式得出函数的解析式,最后通过函数的解析式求出函数的单调递增区间,即可得出结果.【详解】由函数的图像可知函数的周期为、过点、最大值为3,所以,,,,,所以取时,函数的解析式为,将函数的图像向左平移个单位长度得,当时,即时,函数单调递增,故选B.【点睛】本题考查三角函数的相关性质,主要考查三角函数图像的相关性质以及三角函数图像的变换,函数向左平移个单位所得到的函数,考查推理论证能力,是中档题.4、A【解析】
可通过将弦长转化为弦心距问题,结合点到直线距离公式和勾股定理进行求解【详解】如图所示,设弦中点为D,圆心C(3,2),弦心距,又,由勾股定理可得,答案选A【点睛】圆与直线的位置关系解题思路常从两点入手:弦心距、勾股定理。处理过程中,直线需化成一般式5、B【解析】
根据题意画出图形,结合图形求出扇形的面积与三角形的面积,计算弓形的面积,再利用弧长公式计算弧田的面积,求两者的差即可.【详解】如图所示,扇形的半径为,所以扇形的面积为,又三角形的面积为,所以弧田的面积为,又圆心到弦的距离等于,所示矢长为,按照上述弧田的面积经验计算可得弦矢矢,所以两者的差为.故选:B.【点睛】本题主要考查了扇形的弧长公式和面积公式的应用,以及我国古典数学的应用问题,其中解答中认真审题,合理利用扇形弧长和面积公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.6、D【解析】
由二倍角公式可得,即,从而分情况求解.【详解】易得,或.
由得.
由,得.故选:D【点睛】本题考查二倍角公式的应用以及有关的二次齐次式子求值,属于中档题.7、C【解析】
由正弦函数的定义求解.【详解】,显然,∴.故选C.【点睛】本题考查正弦函数的定义,属于基础题.解题时注意的符号.8、B【解析】
直接利用函数图象平移规律得解.【详解】函数y=sin2x-π可得函数y=sin整理得:y=故选:B【点睛】本题主要考查了函数图象平移规律,属于基础题。9、D【解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误.综上,故选.10、C【解析】
根据向量满足的条件确定出P点的位置,再根据三角形有相同的底边,确定高的比即可求出结果.【详解】因为,所以,即点在边上,且,所以点到的距离等于点到距离的,故的面积与的面积之比为.选C.【点睛】本题主要考查了向量的线性运算,三角形的面积,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、①③【解析】
①中,根据直角三角形、锐角三角形和钝角三角形分类讨论,得出必要一个角在内,即可判定;②中,利用两角和的正切公式,化简得到,根据钝角三角形,即可判定;③中,利用向量的运算,得到,由于不共线,得到,再由余弦定理,即可判定.【详解】由题意,对于①中,在中,当,则,若为直角三角形,则必有一个角在内;若为锐角三角形,则必有一个内角小于等于;若为钝角三角形,也必有一个角小于内,所以总存在某个内角,使得,所以是正确的;对于②中,在中,由,可得,由为钝角三角形,所以,所以,所以不正确;对于③中,若,即,即,由于不共线,所以,即,由余弦定理可得,所以最小角小于,所以是正确的.综上可得,命题正确的是①③.故答案为:①③.【点睛】本题以真假命题为载体,考查了正弦、余弦定理的应用,以及向量的运算及应用,其中解答中熟练应用解三角形的知识和向量的运算进行化简是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.12、.【解析】
根据棱锥的结构特点,确定所求的圆柱的高和底面半径.【详解】由题意四棱锥的底面是边长为的正方形,侧棱长均为,借助勾股定理,可知四棱锥的高为,.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,圆柱的底面半径为,一个底面的圆心为四棱锥底面的中心,故圆柱的高为,故圆柱的体积为.【点睛】本题主要考查了圆柱与四棱锥的组合,考查了空间想象力,属于基础题.13、【解析】
求出,,,当,递减,递增,分别讨论,,是否存在“谷值”,注意运用单调性即可.【详解】解:当时,有,,当,递减,递增,且.若时,有,则不存在“谷值”;若时,,则不存在“谷值”;若时,①,则不存在"谷值";②,则不存在"谷值";③,存在"谷值"且为.综上所述,的取值范围是故答案为:【点睛】本题考查新定义及运用,考查数列的单调性和运用,正确理解新定义是迅速解题的关键,是一道中档题.14、【解析】
取中点为,中点为,连接,则异面直线和所成角为.在中,利用边长关系得到余弦值.【详解】由题意,取中点,连接,则,可得直线和所成角的平面角为,(如图)过作垂直于,平面⊥平面,,平面,,且,结合平面图形可得:,,,又=,∴=,∴在中,=,∴△DFC是直角三角形且,可得.【点睛】本题考查了异面直线的夹角,意在考查学生的计算能力和空间想象能力.15、【解析】根据题意,可得OA⊥OC,以O为坐标为坐标原点,OC,OA所在直线分别为x轴、y轴建立平面直角坐标系,如图所示:则有C(1,0),A(0,1),B(cos30°,-sin30°),即.于是.由,得:,则:,解得.∴.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.16、【解析】
由已知得f()=f()+sin=f()+sin+sin=f()+sin+sin+sin,由此能求出结果.【详解】∵函数f(x)(x∈R)满足f(x+π)=f(x)+sinx,当0≤x<π时,f(x)=0,∴f()=f()+sin=f()+sin+sin=f()+sin+sin+sin=0+=.故答案为:.【点睛】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、茎叶图见解析,乙班【解析】
根据表中数据作出茎叶图,再依据茎叶图进行分析.【详解】根据表中数据,作出茎叶图如下:从这个茎叶图中可以看出,甲班成绩集中在70分左右,而乙班成绩集中在80左右,故乙班的数学成绩更好一些.【点睛】本题考查画茎叶图,也考查茎叶图的应用,属于基础题.18、(1);(2)[kπ﹣,kπ+],k∈Z;(3)f(x)=2,f(x)=﹣1【解析】
(1)利用三角恒等变换,化简函数的解析式,再利用正弦函数的周期性,得出结论;(2)利用正弦函数的单调性,求出f(x)的单调增区间;(3)利用正弦函数的定义域和值域,求得当时,f(x)的最大值与最小值.【详解】(1)∵函数f(x)=sin4x+2sinxcosx﹣cos4x=(sin4x﹣cos4x)+sin2x=﹣cos2x+sin2x=2sin(2x﹣),∴f(x)的最小正周期为=π.(2)令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得f(x)的单调增区间为[kπ﹣,kπ+],k∈Z.(3)若,则2x﹣∈,当2x﹣=时,f(x)=2;当2x﹣=﹣时,f(x)=.【点睛】本题主要考查三角恒等变换,正弦函数的周期性、单调性,正弦函数的定义域和值域,属于中档题.19、(1)见解析(2)【解析】
(1)取的中点,连接,先证即说明,再由线面平行的判定定理说明平面.(2)延长交的延长线于,连.说明为所求二面角的平面角.再计算即可.【详解】解:(1)如图所示,取的中点,连接.∵,∴.又,∴.∴四边形为平行四边形.故.∵平面,平面,∴平面.(2)延长交的延长线于,连.由,知,为的中点,又为的中点,∴.又平面,,∴平面.∴为所求二面角的平面角.在等腰直角三角形中,易求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度龙湖地产城市道路照明系统建设合同
- 二零二四年网络游戏运营授权合同2篇
- 二零二四年度智能化工厂改造与升级合同
- 2024年度合同履行保证担保书
- 电网占地合同(2篇)
- 大学毕业生就业协议书(2篇)
- 二零二四年度特许经营合同标的为连锁餐饮业务
- 二零二四年度医疗健康信息管理系统开发与应用合同
- 法律保证书涉及的司法解释
- 盾构劳务分包合同样本
- 在线网课知慧《商科专业写作(南工大)》单元测试考核答案
- 工程联系单表格样本
- 静女复习市公开课一等奖省赛课微课金奖课件
- 滑坡泥石流-高中地理省公开课金奖全国赛课一等奖微课获奖
- 维修人员绩效考核制度
- 三年级上册数学除法竖式计算300道带答案
- 技术交流会流程方案
- 《hadoop基础》课件-第二章 Hadoop介绍
- 昆山国宾体检报告查询
- 铜矿的热法冶炼与电法冶炼
- 2023年MBA综合真题及答案(管理类联考综合)
评论
0/150
提交评论