




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西北狼联盟高2024年高一下数学期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数的图象向左平移个单位得到函数的图象,则的值为()A. B. C. D.2.在中,若,则的形状是()A.钝角三角形 B.直角三角形C.锐角三角形 D.不能确定3.函数的图象大致为()A. B. C. D.4.在中,内角,,的对边分别为,,,若,且,则的形状为()A.等边三角形 B.等腰直角三角形C.最大角为锐角的等腰三角形 D.最大角为钝角的等腰三角形5.设满足约束条件则的最大值为().A.10 B.8 C.3 D.26.()A.0 B. C. D.17.在某种新型材料的研制中,实验人员获得了下列一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是()345.156.1264.04187.51218.01A. B. C. D.8.若,,且,则与的夹角是()A. B. C. D.9.设集合,,若存在实数t,使得,则实数的取值范围是()A. B. C. D.10.下列表达式正确的是()①,②若,则③若,则④若,则A.①② B.②③ C.①③ D.③④二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列,其前项和为,若,则在,,…,中,满足的的个数为______.12.在区间上,与角终边相同的角为__________.13.方程的解集是__________.14.设向量,若,,则.15.我国南宋时期著名的数学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法——“三斜求积术”,即的,其中分别为内角的对边.若,且则的面积的最大值为____.16.设等差数列的前项和为,若,,则的最小值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知平面向量满足:(1)求与的夹角;(2)求向量在向量上的投影.18.某校为创建“绿色校园”,在校园内种植树木,有A、B、C三种树木可供选择,已知这三种树木6年内的生长规律如下:A树木:种植前树木高0.84米,第一年能长高0.1米,以后每年比上一年多长高0.2米;B树木:种植前树木高0.84米,第一年能长高0.04米,以后每年生长的高度是上一年生长高度的2倍;C树木:树木的高度(单位:米)与生长年限(单位:年,)满足如下函数:(表示种植前树木的高度,取).(1)若要求6年内树木的高度超过5米,你会选择哪种树木?为什么?(2)若选C树木,从种植起的6年内,第几年内生长最快?19.在中,分别是角的对边,且.(1)求的大小;(2)若,求的面积.20.(已知函数.(I)求函数的最小正周期及在区间上的最大值和最小值;(II)若,求的值.21.已知函数当时,求函数的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】,向左平移个单位得到函数=,故2、A【解析】
由正弦定理得,再由余弦定理求得,得到,即可得到答案.【详解】因为在中,满足,由正弦定理知,代入上式得,又由余弦定理可得,因为C是三角形的内角,所以,所以为钝角三角形,故选A.【点睛】本题主要考查了利用正弦定理、余弦定理判定三角形的形状,其中解答中合理利用正、余弦定理,求得角C的范围是解答本题的关键,着重考查了推理与运算能力,属于基础题.3、C【解析】
利用函数的性质逐个排除即可求解.【详解】函数的定义域为,故排除A、B.令又,即函数为奇函数,所以函数的图像关于原点对称,排除D故选:C【点睛】本题考查了函数图像的识别,同时考查了函数的性质,属于基础题.4、D【解析】
先由余弦定理,结合题中条件,求出,再由,求出,进而可得出三角形的形状.【详解】因为,所以,,所以.又,所以,则的形状为最大角为钝角的等腰三角形.故选D【点睛】本题主要考查三角形的形状的判定,熟记余弦定理即可,属于常考题型.5、B【解析】
作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数即可求解.【详解】作出可行域如图:化目标函数为,联立,解得.由图象可知,当直线过点A时,直线在y轴上截距最小,有最大值.【点睛】本题主要考查了简单的线性规划,数形结合的思想,属于中档题.6、C【解析】试题分析:考点:两角和正弦公式7、A【解析】
由表中的数据分析得:自变量基本上是等速增加,相应的函数值增加的速度越来越快,结合基本初等函数的单调性,即可得出答案.【详解】对于A:函数在是单调递增,且函数值增加速度越来越快,将自变量代入,相应的函数值,比较接近,符合题意,所以正确;对于B:函数值随着自变量增加是等速的,不合题意;对于C:函数值随着自变量的增加比线性函数还缓慢,不合题意;选项D:函数值随着自变量增加反而减少,不合题意.故选:A.【点睛】本题考查函数模型的选择和应用问题,解题的关键是掌握各种基本初等函数,如一次函数,二次函数,指数函数,对数函数的图像与性质,属于基础题.8、B【解析】
根据相互垂直的向量数量积为零,求出与的夹角.【详解】由题有,即,故,因为,所以.故选:B.【点睛】本题考查了向量的数量积运算,向量夹角的求解,属于基础题.9、C【解析】
得到圆心距与半径和差关系得到答案.【详解】圆心距存在实数t,使得故答案选C【点睛】本题考查了两圆的位置关系,意在考查学生的计算能力.10、D【解析】
根据基本不等式、不等式的性质即可【详解】对于①,.当,即时取,而,.即①不成立。对于②若,则,若,显然不成立。对于③若,则,则正确。对于④若,则,则,正确。所以选择D【点睛】本题主要考查了基本不等式以及不等式的性质,基本不等式一定要满足一正二定三相等。属于中等题。二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
运用周期公式,求得,运用诱导公式及三角恒等变换,化简可得,即可得到满足条件的的值.【详解】解:,可得周期,,则满足的的个数为.故答案为:1.【点睛】本题考查三角函数的周期性及应用,考查三角函数的化简和求值,以及运算能力,属于中档题.12、【解析】
根据与终边相同的角可以表示为这一方法,即可得出结论.【详解】因为,所以与角终边相同的角为.【点睛】本题考查终边相同的角的表示方法,考查对基本概念以及基本知识的熟练程度,考查了数学运算能力,是简单题.13、【解析】
令,,将原方程化为关于的一元二次方程,解出得到,进而得出方程的解集.【详解】令,,故原方程可化为,解得或,故而或,即方程的解集是,故答案为.【点睛】本题主要考查了指数方程的解法,转化为一元二次方程是解题的关键,属于基础题.14、【解析】
利用向量垂直数量积为零列等式可得,从而可得结果.【详解】因为,且,所以,可得,又因为,所以,故答案为.【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.15、【解析】
由已知利用正弦定理可求,代入“三斜求积”公式即可求得答案.【详解】因为,所以整理可得,由正弦定理得因为,所以所以当时,的面积的最大值为【点睛】本题用到的知识点有同角三角函数的基本关系式,两角和的正弦公式,正弦定理等,考查学生分析问题的能力和计算整理能力.16、【解析】
用基本量法求出数列的通项公式,由通项公式可得取最小值时的值,从而得的最小值.【详解】设数列公差为,则由已知得,解得,∴,,,又,、∴的最小值为.故答案为:..【点睛】本题考查等差数列的前项和的最值.首项为负且递增的等差数列,满足的最大的使得最小,首项为正且递减的等差数列,满足的最大的使得最大,当然也可把表示为的二次函数,由二次函数知识求得最值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)由题,先求得的大小,再根据数量积的公式,可得与的夹角;(2)先求得的模长,再直接利用向量几何意义的公式,求得结果即可.【详解】(1)∵,∴,又∵,∴,∴,∴(2)∵,∴∴向量在向量上的投影为【点睛】本题考查了向量的知识,熟悉向量数量积的知识点和几何意义是解题的关键所在,属于中档题.18、(1)选择C;(2)第4或第5年.【解析】
(1)根据已知求出三种树木六年末的高度,判断得解;(2)设为第年内树木生长的高度,先求出,设,则,.再利用分析函数的单调性,分析函数的图像得解.【详解】(1)由题意可知,A、B、C三种树木随着时间的增加,高度也在增加,6年末:A树木的高度为(米):B树木的高度为(米):C树木的高度为(米),所以选择C树木.(2)设为第年内树木生长的高度,则,所以,,.设,则,.令,因为在区间上是减函数,在区间上是增函数,所以当时,取得最小值,从而取得最大值,此时,解得,因为,,故的可能值为3或4,又,,即.因此,种植后第4或第5年内该树木生长最快.【点睛】本题主要考查等差数列和等比数列求和,考查函数的图像和性质的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于难题.19、(1)(2)【解析】试题分析:(Ⅰ)先由正弦定理将三角形的边角关系转化为角角关系,再利用两角和的正弦公式和诱导公式进行求解;(Ⅱ)先利用余弦定理求出,再利用三角形的面积公式进行求解.试题解析:(Ⅰ)由又所以.(Ⅱ)由余弦定理有,解得,所以点睛:在利用余弦定理进行求解时,往往利用整体思想,可减少计算量,若本题中的.20、函数在区间上的最大值为2,最小值为-1【解析】试题分析:(1)将函数利用倍角公式和辅助角公式化简为,再利用周期可得最小正周期,由找出对应范围,利用正弦函数图像可得值域;(2)先利用求出,再由角的关系展开后代入可得值.试题解析:(1)所以又所以由函数图像知.(2)解:由题意而所以所以所以=.考点:三角函数性质;同角间基本关系式;两角和的余弦公式21、当时,,当时,,当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跨国货物运输代理合同范例
- 2025版工程总承包合同EPC模式
- 高层办公楼建筑深度剖析
- 5《老师 您好》公开课一等奖创新教学设计(表格式)-1
- 局部冻伤的预防与护理
- 高中化学 第2章 元素与物质世界 第1节 元素与物质的分类一、二教学设计1 鲁科版必修1
- 电力供应与购买合同
- 人教版小学二年级上册数学 第6单元 第2课时 8的乘法口诀 教案
- 电商企业股份制联合入股合同
- 不锈钢制品施工合同模板
- 心肺复苏、电除颤、海姆立克理论考试测试题
- 硫酸车间焚硫炉烘炉及锅炉煮炉方案资料
- 大班语言《扁担和板凳》
- 新产品试产管理程序
- 各国关于数据与个人隐私的法律规定
- 人教版(PEP)五年级英语下册(U1-U4)单元专题训练(含答案)
- 维生素K2行业研究、市场现状及未来发展趋势(2020-2026)
- 定远县蔡桥水库在建工程实施方案
- 绘本故事《三只小猪盖房子》课件
- GB 13296-2013 锅炉、热交换器用不锈钢无缝钢管(高清版)
- 部编版八年级语文下册写作《学写读后感》精美课件
评论
0/150
提交评论