




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省宜春实验中学数学高一下期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,(,,分别为角、、的对边),则的形状为()A.等边三角形 B.直角三角形C.等腰三角形或直角三角形 D.等腰直角三角形2.如图所示,在ΔABC,已知∠A:∠B=1:2,角C的平分线CD把三角形面积分为3:2两部分,则cosAA.13 B.12 C.33.已知平面向量,的夹角为,,,则向的值为()A.-2 B. C.4 D.4.已知函数,则下列命题正确的是()①的最大值为2;②的图象关于对称;③在区间上单调递增;④若实数m使得方程在上恰好有三个实数解,,,则;A.①② B.①②③ C.①③④ D.①②③④5.已知函数,若存在,且,使成立,则以下对实数的推述正确的是()A. B. C. D.6.已知向量=(2,tan),=(1,-1),∥,则=()A.2 B.-3 C.-1 D.-37.方程的解集是()A. B.C. D.8.若向量,的夹角为60°,且||=2,||=3,则|2|=()A.2 B.14 C.2 D.89.若是等比数列,下列结论中不正确的是()A.一定是等比数列; B.一定是等比数列;C.一定是等比数列; D.一定是等比数列10.若,,则的终边所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题:本大题共6小题,每小题5分,共30分。11.如图,货轮在海上以的速度沿着方位角(从指北方向顺时针转到目标方向线的水平角)为150°的方向航行.为了确定船位,在点B观察灯塔A的方位角是120°,航行半小时后到达C点,观察灯塔A的方位角是75°,则货轮到达C点时与灯塔A的距离为______nmile12.若,则__________.(结果用反三角函数表示)13.已知点和点,点在轴上,若的值最小,则点的坐标为______.14.若点为圆的弦的中点,则弦所在的直线的方程为___________.15.已知数列的通项公式为,数列的通项公式为,设,若在数列中,对任意恒成立,则实数的取值范围是_________.16.若数列的前项和,满足,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.求下列方程和不等式的解集(1)(2)18.已知圆M的圆心在直线上,直线与圆M相切于点.(1)求圆M的标准方程;(2)已知过点且斜率为的直线l与圆M交于不同的两点A、B,而且满足,求直线l的方程.19.在平面直角坐标系中,已知.(1)求的值;(2)若,求的值.20.对于函数f1(x), f2(x), h(x),如果存在实数(1)下面给出两组函数,h(x)是否分别为f1第一组:f1第二组:;(2)设f1x=log2x,f2x21.在海上进行工程建设时,一般需要在工地某处设置警戒水域;现有一海上作业工地记为点,在一个特定时段内,以点为中心的1海里以内海域被设为警戒水域,点正北海里处有一个雷达观测站,某时刻测得一艘匀速直线行驶的船只位于点北偏东且与点相距10海里的位置,经过12分钟又测得该船已行驶到点北偏东且与点相距海里的位置.(1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶.试判断它是否会进入警戒水域(点与船的距离小于1海里即为进入警戒水域),并说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
利用二倍角公式,正弦定理,结合和差公式化简等式得到,得到答案.【详解】故答案选B【点睛】本题考查了正弦定理,和差公式,意在考查学生的综合应用能力.2、C【解析】
由两个三角形的面积比,得到边ACCB=32,利用正弦定理【详解】∵角C的平分线CD,∴∠ACD=∠BCD∵S∴设AC=3x,CB=2x,∵∠A:∠B=1:2,设∠A=α,∠B=2α,在ΔABC中,利用正弦定理2xsin解得:cosα=【点睛】本题考查三角形面积公式、正弦定理在平面几何中的综合应用.3、C【解析】
通过已知条件,利用向量的数量积化简求解即可.【详解】平面向量,的夹角为,或,则向量.故选:【点睛】本题考查向量数量积公式,属于基础题.4、C【解析】
,由此判断①的正误,根据判断②的正误,由求出的单调递增区间,即可判断③的正误,结合的图象判断④的正误.【详解】因为,故①正确因为,故②不正确由得所以在区间上单调递增,故③正确若实数m使得方程在上恰好有三个实数解,结合的图象知,必有此时,另一解为即,,满足,故④正确综上可知:命题正确的是①③④故选:C【点睛】本题考查的是三角函数的图象及其性质,解决这类问题时首先应把函数化成三角函数基本型.5、A【解析】
先根据的图象性质,推得函数的单调区间,再依据条件分析求解.【详解】解:是把的图象中轴下方的部分对称到轴上方,函数在上递减;在上递增.函数的图象可由的图象向右平移1个单位而得,在,上递减,在,上递增,若存在,,,,使成立,故选:.【点睛】本题考查单调函数的性质、反正切函数的图象性质及函数的图象的平移.图象可由的图象向左、向右平移个单位得到,属于基础题.6、B【解析】
通过向量平行得到的值,再利用和差公式计算【详解】向量=(2,tan),=(1,-1),∥故答案选B【点睛】本题考查了向量的平行,三角函数和差公式,意在考查学生的计算能力.7、C【解析】
把方程化为,结合正切函数的性质,即可求解方程的解,得到答案.【详解】由题意,方程,可化为,解得,即方程的解集为.故答案为:C.【点睛】本题主要考查了三角函数的基本关系式,以及三角方程的求解,其中解答中熟记正切函数的性质,准确求解是解答的关键,着重考查了推理与运算能力,属于基础题.8、A【解析】
由已知可得||,根据数量积公式求解即可.【详解】||.故选A.【点睛】本题考查平面向量数量积的性质及运算,考查了利用数量积进行向量模的运算求解方法,属于基础题.9、C【解析】
判断等比数列,可根据为常数来判断.【详解】设等比数列的公比为,则对A:为常数,故一定是等比数列;对B:为常数,故一定是等比数列;对C:当时,,此时为每项均为0的常数列;对D:为常数,故一定是等比数列.故选:C.【点睛】本题主要考查等比数列的判定,若数列的后项除以前一项为常数,则该数列为等比数列.本题选项C容易忽略时这种情况.10、B【解析】由一全正二正弦三正切四余弦可得的终边所在的象限为第二象限,故选B.考点:三角函数二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
通过方位角定义,求出,,利用正弦定理即可得到答案.【详解】根据题意,可知,,,因此可得,由正弦定理得:,求得,即答案为.【点睛】本题主要考查正弦定理的实际应用,难度不大.12、;【解析】
由条件利用反三角函数的定义和性质即可求解.【详解】,则,故答案为:【点睛】本题考查了反三角函数的定义和性质,属于基础题.13、【解析】
作出图形,作点关于轴的对称点,由对称性可知,结合图形可知,当、、三点共线时,取最小值,并求出直线的方程,与轴方程联立,即可求出点的坐标.【详解】如下图所示,作点关于轴的对称点,由对称性可知,则,当且仅当、、三点共线时,的值最小,直线的斜率为,直线的方程为,即,联立,解得,因此,点的坐标为.故答案为:.【点睛】本题考查利用折线段长的最小值求点的坐标,涉及两点关于直线对称性的应用,考查数形结合思想的应用,属于中等题.14、;【解析】
利用垂径定理,即圆心与弦中点连线垂直于弦.【详解】圆标准方程为,圆心为,,∵是中点,∴,即,∴的方程为,即.故答案为.【点睛】本题考查垂径定理.圆中弦问题,常常要用垂径定理,如弦长(其中为圆心到弦所在直线的距离).15、【解析】
首先分析题意,可知是取和中的最大值,且是该数列中的最小项,结合数列的单调性和数列的单调性可得出或,代入数列的通项公式即可求出实数的取值范围.【详解】由题意可知,是取和中的最大值,且是数列中的最小项.若,则,则前面不会有数列的项,由于数列是单调递减数列,数列是单调递增数列.,数列单调递减,当时,必有,即.此时,应有,,即,解得.,即,得,此时;若,则,同理,前面不能有数列的项,即,当时,数列单调递增,数列单调递减,.当时,,由,即,解得.由,得,解得,此时.综上所述,实数的取值范围是.故答案为:.【点睛】本题考查利用数列的最小项求参数的取值范围,同时也考查了数列中的新定义,解题的关键就是要分析出数列的单调性,利用一些特殊项的大小关系得出不等式组进行求解,考查分析问题和解决问题的能力,属于难题.16、【解析】
令,得出,令,由可计算出在时的表达式,然后就是否符合进行检验,由此可得出.【详解】当时,;当时,则.也适合.综上所述,.故答案为:.【点睛】本题考查利用求,一般利用来计算,但需要对进行检验,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】
(1)先将方程变形得到,根据,得到,进而可求出结果;(2)由题意得到,求解即可得出结果.【详解】(1)由得,因为,所以,因此或;即原方程的解集为:或;(2)由得,即,解得:.故,原不等式的解集为:.【点睛】本题主要考查解含三角函数的方程,以及反三角函数不等式,熟记三角函数性质,根据函数单调性即可求解,属于常考题型.18、(1)(2)或【解析】
(1)设圆心坐标为,由圆的性质可得,再求解即可;(2)设,,则等价于,再利用韦达定理求解即可.【详解】解:(1)由圆M的圆心在直线上,设圆心坐标为,又直线与圆M相切于点,则,解得:,即圆心坐标,半径,即圆M的标准方程为;(2)由题意可得直线l的方程为,联立,消整理可得,则,即,又,则恒成立,设,,则由题意有,则,,又,则,则,即,整理得,解得或,即直线l的方程为或,即或.【点睛】本题考查了圆的标准方程的求法,重点考查了直线与圆的位置关系,属中档题.19、(1);(2).【解析】
(1)由,得到,再结合向量的模的运算公式,即可求解.(2)因为,得到,求得,结合正切的倍角公式,即可求解.【详解】(1)由题意知,所以,因此;(2)因为,所以,即,因此.【点睛】本题主要考查了向量的坐标运算,向量的模的求解,以及向量的垂直的条件的应用和正切的倍角公式的化简求值等,着重考查了推理与计算能力,属于基础题.20、(1)见解析;(2)(-∞,-5)【解析】
(1)①设asinx+bcos取a=12, b=②设a(x2-x)+b(则a+b=1-a+b=-1b=1,该方程组无解.所以h(x)不是(2)因为f1所以h(x)=2f不等式3h2(x)+2等价于t<-3h2(x)-2令s=log2x,则s∈[1,知y取得最大值-5,所以t<-5.考点:①创新题型即新定义问题②不等式有解球参数范围问题21、(1)海里/小时;(2)该船不改变航行方向则会进入警戒水域,理由见解析.【解析】
(1)建立直角坐标系,首先求出位置与位置的距离,然后除以经过的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社交电商平台的用户体验优化策略
- 2025至2030年中国疼痛立消贴数据监测研究报告
- 现如今医院建筑中的绿色装修策略与实践
- 科技展览与青少年道德素质培养的路径
- 学校财务合同范本
- 留守儿童家庭教育调查问卷模板(10篇)
- 设备喷漆合同范本
- 2025至2030年中国焙茶机数据监测研究报告
- 2025至2030年中国焊制四通数据监测研究报告
- 科技助力电力工程企业渠道拓展
- 企业反商业贿赂法律法规培训
- 2023合同香港劳工合同
- 玻璃体腔注射-操作流程和注意事项(特选参考)课件
- 材料化学课件
- 智能传感器芯片
- -《多轴数控加工及工艺》(第二版)教案
- 智能交通概论全套教学课件
- 生物医学工程伦理 课件全套 第1-10章 生物医学工程与伦理-医学技术选择与应用的伦理问题
- 烧结机安装使用说明书
- 新战略营销课件
- (完整版)部编一年级下册语文《春夏秋冬》ppt
评论
0/150
提交评论