2023-2024学年上海市浦东新区建平中学高一下数学期末教学质量检测模拟试题含解析_第1页
2023-2024学年上海市浦东新区建平中学高一下数学期末教学质量检测模拟试题含解析_第2页
2023-2024学年上海市浦东新区建平中学高一下数学期末教学质量检测模拟试题含解析_第3页
2023-2024学年上海市浦东新区建平中学高一下数学期末教学质量检测模拟试题含解析_第4页
2023-2024学年上海市浦东新区建平中学高一下数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年上海市浦东新区建平中学高一下数学期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则函数的单调递增区间为()A. B. C. D.2.如图,若长方体的六个面中存在三个面的面积分别是2,3,6,则该长方体中线段的长是()A. B. C.28 D.3.平面与平面平行的充分条件可以是()A.内有无穷多条直线都与平行B.直线,,且直线a不在内,也不在内C.直线,直线,且,D.内的任何一条直线都与平行4.在△ABC中,点D在线段BC的延长线上,且=3,点O在线段CD上(与点C,D不重合),若=x+(1-x),则x的取值范围是()A. B.C. D.5.已知,,,若点是所在平面内一点,且,则的最大值等于().A. B. C. D.6.已知等差数列{an}的公差为2,若a1,a3,a4成等比数列,则a2等于A.-10 B.-8 C.-6 D.-47.函数的定义域为R,数列是公差为的等差数列,若,,则()A.恒为负数 B.恒为正数C.当时,恒为正数;当时,恒为负数 D.当时,恒为负数;当时,恒为正数8.若,则()A. B. C.2 D.9.三棱锥的高,若,二面角为,为的重心,则的长为()A. B. C. D.10.sincos+cos20°sin40°的值等于A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.执行如图所示的程序框图,则输出的_______.12.关于函数有下列命题:①由可得必是的整数倍;②的图像关于点对称,其中正确的序号是____________.13.若三边长分别为3,5,的三角形是锐角三角形,则的取值范围为______.14.若则____________15.已知等比数列、、、满足,,,则的取值范围为__________.16.已知函数,为的反函数,则_______(用反三角形式表示).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的最小正周期是.(1)求ω的值;(2)求函数f(x)的最大值,并且求使f(x)取得最大值的x的集合.18.已知向量,,其中为坐标原点.(1)若,求向量与的夹角;(2)若对任意实数都成立,求实数的取值范围.19.(1)证明:;(2)证明:对任何正整数n,存在多项式函数,使得对所有实数x均成立,其中均为整数,当n为奇数时,,当n为偶数时,;(3)利用(2)的结论判断是否为有理数?20.如图所示,在直角坐标系中,点,,点P,Q在单位圆上,以x轴正半轴为始边,以射线为终边的角为,以射线为终边的角为,满足.(1)若,求(2)当点P在单位圆上运动时,求函数的解析式,并求的最大值.21.设数列的前项和为,且.(1)求数列的通项公式;(2)若,为数列位的前项和,求;(3)在(2)的条件下,是否存在自然数,使得对一切恒成立?若存在,求出的值;若不存在,说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

由题意利用两角和的余弦公式化简函数的解析式,再利用余弦函数的单调性,得出结论.【详解】函数,令,求得,可得函数的增区间为,,.再根据,,可得增区间为,,故选.【点睛】本题主要考查两角和的余弦公式的应用,考查余弦函数的单调性,属于基础题.2、A【解析】

由长方体的三个面对面积先求出同一点出发的三条棱长,即可求出结果.【详解】设长方体从一个顶点出发的三条棱的长分别为,且,,,则,,,所以长方体中线段的长等于.【点睛】本题主要考查简单几何体的结构特征,属于基础题型.3、D【解析】

利用平面与平面平行的判定定理一一进行判断,可得正确答案.【详解】解:A选项,内有无穷多条直线都与平行,并不能保证平面内有两条相交直线与平面平行,这无穷多条直线可以是一组平行线,故A错误;B选项,直线,,且直线a不在内,也不在内,直线a可以是平行平面与平面的相交直线,故不能保证平面与平面平行,故B错误;C选项,直线,直线,且,,当直线,同样不能保证平面与平面平行,故C错误;D选项,内的任何一条直线都与平行,则内至少有两条相交直线与平面平行,故平面与平面平行;故选:D.【点睛】本题主要考查平面与平面平行的判断,解题时要认真审题,熟练掌握面与平面平行的判定定理,注意空间思维能力的培养.4、D【解析】

根据所给的数量关系,写出要求向量的表示式,注意共线的向量之间的三分之一关系,根据表示的关系式和所给的关系式进行比较,得到结果.【详解】如图.依题意,设=λ,其中1<λ<,则有=+=+λ=+λ(-)=(1-λ)+λ.又=x+(1-x),且不共线,于是有x=1-λ∈,即x的取值范围是.故选D.【点睛】本题考查向量的基本定理,是一个基础题,这种题目可以出现在解答题目中,也可以单独出现,注意表示向量时,一般从向量的起点出发,绕着图形的边到终点.5、A【解析】以为坐标原点,建立平面直角坐标系,如图所示,则,,,即,所以,,因此,因为,所以的最大值等于,当,即时取等号.考点:1、平面向量数量积;2、基本不等式.6、C【解析】试题分析:有题可知,a1,a3,a4成等比数列,则有,又因为{an}是等差数列,故有,公差d=2,解得;考点:等差数列通项公式‚等比数列性质7、A【解析】

由函数的解析式可得函数是奇函数,且为单调递增函数,分和两种情况讨论,分别利用函数的奇偶性和单调性,即可求解,得到结论.【详解】由题意,因为函数,根据幂函数和反正切函数的性质,可得函数在为单调递增函数,且满足,所以函数为奇函数,因为数列是公差为的等差数列,且,则①当时,由,可得,所以,所以,同理可得:,所以,②当时,由,则,所以综上可得,实数恒为负数.故选:A.【点睛】本题主要考查了函数的单调性与奇偶性的应用,以及等差数列的性质的应用,其中解答中合理利用等差数列的性质和函数的性质求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.8、D【解析】

将转化为,结合二倍角的正切公式即可求出.【详解】故选D【点睛】本题主要考查了二倍角的正切公式,关键是将转化为,利用二倍角的正切公式求出,属于基础题.9、C【解析】

根据AB=AC,取BC的中点E,连结AE,得到AE⊥BC,再由由AH⊥平面BCD,得到EH⊥BC.,所以∠GEH是二面角的平面角,然后在△GHE中,利用余弦定理求解.【详解】:如图所示:取BC的中点E,连结AE,∵AB=AC,∴AE⊥BC,且点G在中线AE上,连结HE.∵AH⊥平面BCD,∴EH⊥BC.∴∠GEH=60°.在Rt△AHE中,∵∠AEH=60°,AH=∴EH=AHtan30°=3,AE=6,GE=AE=2由余弦定理得HG2=9+4-2×3×2cos60°=7.∴HG=故选:C【点睛】本题主要考查了二面角问题,还考查了空间想象和推理论证的能力,属于中档题.10、B【解析】由题可得,.故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

按照程序框图运行程序,直到a的值满足a>100时,输出结果即可.【详解】第一次循环:a=3;第二次循环:a=7;第三次循环:a=15;第四次循环:a=31;第五次循环:a=63;第六次循环:a=127,a>100,所以输出a.所以本题答案为127.【点睛】本题考查根据程序框图中的循环结构计算输出结果的问题,属于基础题.12、②【解析】

对①,可令求出的通式,再进行判断;对②,将代入检验是否为0即可【详解】对①,令得,可令,,①错;对②,当时,,②对故正确序号为:②故答案为②【点睛】本题考查三角函数的基本性质,属于基础题13、【解析】

由三边长分别为3,5,的三角形是锐角三角形,若5是最大边,则,解得范围,若是最大边,则,解得范围,即可得出.【详解】解:由三边长分别为3,5,的三角形是锐角三角形,若5是最大边,则,解得.若是最大边,则,解得.综上可得:的取值范围为.故答案为:.【点睛】本题考查了不等式的性质与解法、余弦定理、分类讨论方法,考查了推理能力与计算能力,属于中档题.14、【解析】因为,所以=.故填.15、【解析】

设等比数列、、、的公比为,由和计算出的取值范围,再由可得出的取值范围.【详解】设等比数列、、、的公比为,,,,所以,,,.所以,,故答案为:.【点睛】本题考查等比数列通项公式及其性质,解题的关键就是利用已知条件求出公比的取值范围,考查运算求解能力,属于中等题.16、【解析】

先将转化为,,然后求出即可【详解】因为所以所以所以所以把与互换可得即所以故答案为:【点睛】本题考查的是反函数的求法,较简单三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)函数f(x)的最大值是2+,此时x的集合为{x|x=+,k∈Z}.【解析】试题分析析:本题是函数性质问题,可借助正弦函数的图象与性质去研究,根据周期公式可以求出,当函数的解析式确定后,可以令,,根据正弦函数的最大值何时取得,可以计算出为何值时,函数值取得的最大值,进而求出的值的集合.试题解析:(1)∵f(x)=sin(+2(x∈R,ω>0)的最小正周期是,∴,所以ω=2.(2)由(1)知,f(x)=sin+2.当4x+=+2kπ(k∈Z),即x=+(k∈Z)时,sin取得最大值1,所以函数f(x)的最大值是2+,此时x的集合为{x|x=+,(k∈Z)}.【点睛】函数的最小正周期为,根据公式求出,页有关函数的性质可按照复合函数的思想去求,可以看成与.复合而成的复合函数,譬如本题求函数的最大值,可以令,求出值,同时求出函数的最大值2.18、(1)或;(2)或.【解析】

(1)按向量数量积的定义先求夹角余弦,再求得夹角;(2)不等式化为恒成立,令取1和-1代入解不等式组即可得.【详解】(1)由题意,,记向量与的夹角为,又,则,当时,,,当时,,.(2),由得,∵,∴,∴,解得或.【点睛】本题考查向量模与夹角,考查不等式恒成立问题,不等式中把作为一个整体,它是关于的一次不等式,因此要使它恒成立,只要取1和-1时均成立即可.19、(1)见解析;(2)见解析;(3)不是【解析】

(1),利用两角和的正弦和二倍角公式,进行证明;(2)对分奇偶,即和两种情况,结合两角和的余弦公式,积化和差公式,利用数学归纳法进行证明;(3)根据(2)的结论,将表示出来,然后判断其每一项都为无理数,从而得到答案.【详解】(1)所以原式得证.(2)为奇数时,时,,其中,成立时,,其中,成立时,,其中,成立,则当时,所以得到因为均为整数,所以也均为整数,故原式成立;为偶数时,时,,其中,时,,其中,成立,时,,其中,成立,则当时,所以得到其中,因为均为整数,所以也均为整数,故原式成立;综上可得:对任何正整数,存在多项式函数,使得对所有实数均成立,其中,均为整数,当为奇数时,,当为偶数时,;(3)由(2)可得其中均为有理数,因为为无理数,所以均为无理数,故为无理数,所以不是有理数.【点睛】本题考查利三角函数的二倍角的余弦公式,积化和差公式,数学归纳法证明,属于难题.20、(1)(2),最大值.【解析】

(1)由角的定义求出,再由数量积定义计算;(2)由三角函数定义写出坐标,求出的坐标,计算出,利用两角和的正弦公式可化函数为一个三角函数形式,由正弦函数性质可求得最大值.【详解】(1)由图可知,,..(2)由题意可知,.因为,,所以.所以,.所以.当()时,取得最大值.【点睛】本题考查任意角的定义,平面向量的数量积的坐标运算,考查两角和的正弦公式、诱导公式及正弦函数的性质.本题解题关键是掌握三角函数的定义,表示出坐标.21、(1)(2)(3)【解析】

(1)根据题干可推导得到,进而得到数列是以为首项,为公比的等比数列,由等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论