




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年学易试题君之单元测试君高一数学第二学期期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.阅读如图的程序框图,运行该程序,则输出的值为()A.3 B.1C.-1 D.02.等比数列中,,,则公比等于()A.2 B.3 C. D.3.已知圆的圆心与点关于直线对称,直线与圆相交于,两点,且,则圆的半径长为()A. B. C.3 D.4.已知,,且,则实数等于()A.-1 B.-9 C.3 D.95.函数的图象是()A. B. C. D.6.如图所示,在正方体ABCD—A1B1C1D1中,若E是A1C1的中点,则直线CE垂直于()A.AC B.A1D1 C.A1D D.BD7.已知平面向量,且,则()A. B. C. D.8.抽查10件产品,设“至少抽到2件次品”为事件,则的对立事件是()A.至多抽到2件次品 B.至多抽到2件正品C.至少抽到2件正品 D.至多抽到一件次品9.下列各角中与角终边相同的是()A. B. C. D.10.设是内任意一点,表示的面积,记,定义,已知,是的重心,则()A.点在内 B.点在内C.点在内 D.点与点重合二、填空题:本大题共6小题,每小题5分,共30分。11.设向量是两个不共线的向量,若与共线,则_______.12.已知圆上有两个点到直线的距离为3,则半径的取值范围是________13.已知实数满足约束条件,若目标函数仅在点处取得最小值,则的取值范围是__________.14.设函数的部分图象如图所示,则的表达式______.15.已知向量满足,则与的夹角的余弦值为__________.16.函数的最小正周期为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某医学院读书协会欲研究昼夜温差大小与患感冒人数多少之间的关系,该协会分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如图所示的频率分布直方图.该协会确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(Ⅰ)已知选取的是1月至6月的两组数据,请根据2至5月份的数据,求出就诊人数关于昼夜温差的线性回归方程;(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(Ⅰ)中该协会所得线性回归方程是否理想?参考公式:回归直线的方程,其中,.18.正四棱锥中,,分别为,的中点.(1)求证:平面;(2)若,求异面直线和所成角的余弦值.19.求倾斜角为且分别满足下列条件的直线方程:(1)经过点;(2)在轴上的截距是-5.20.在等差数列中,,其前项和为,等比数列的各项均为正数,,且,.(1)求数列和的通项公式;(2)令,设数列的前项和为,求()的最大值与最小值.21.记Sn为等差数列an的前n项和,已知(1)求an(2)求Sn,并求S
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
从起始条件、开始执行程序框图,直到终止循环.【详解】,,,,,输出.【点睛】本题是直到型循环,只要满足判断框中的条件,就终止循环,考查读懂简单的程序框图.2、A【解析】
由题意利用等比数列的通项公式,求出公比的值.【详解】解:等比数列中,,,,则公比,故选:.【点睛】本题主要考查等比数列的通项公式的应用,属于基础题.3、A【解析】
根据题干画出简图,在直角中,通过弦心距和半径关系通过勾股定理求解即可。【详解】圆的圆心与点关于直线对称,所以,,设圆的半径为,如下图,圆心到直线的距离为:,,【点睛】直线和圆相交问题一般两种方法:第一,通过弦心距d和半径r的关系,通过勾股定理求解即可。第二,直线方程和圆的方程联立,则。两种思路,此题属于中档题型。4、C【解析】
由可知,再利用坐标公式求解.【详解】因为,,且,所以,即,解得,故选:C.【点睛】本题考查向量的坐标运算,解题关键是明确.5、D【解析】
求出分段函数的解析式,由此确定函数图象.【详解】由于,根据函数解析式可知,D选项符合.故选:D【点睛】本小题主要考查分段函数图象的判断,属于基础题.6、D【解析】
在正方体内结合线面关系证明线面垂直,继而得到线线垂直【详解】,平面,平面,则平面又因为平面则故选D【点睛】本题考查了线线垂直,在求解过程中先求得线面垂直,由线面垂直的性质可得线线垂直,从而得到结果7、B【解析】试题分析:因为,,且,所以,,故选B.考点:1、平面向量坐标运算;2、平行向量的性质.8、D【解析】
由对立事件的概念可知,直接写出其对立事件即可.【详解】“至少抽到2件次品”的对立事件为“至多抽到1件次品”,故选D【点睛】本题主要考查对立事件的概念,熟记对立事件的概念即可求解,属于基础题型.9、D【解析】
写出与终边相同的角,取值得答案.【详解】解:与终边相同的角为,,取,得,与终边相同.故选:D.【点睛】本题考查终边相同角的表示法,属于基础题.10、A【解析】解:由已知得,f(P)=(λ1,λ2,λ3)中的三个坐标分别为P分△ABC所得三个三角形的高与△ABC的高的比值,∵f(Q)=(1/2,1/3,1/6)∴P离线段AB的距离最近,故点Q在△GAB内由分析知,应选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:∵向量,是两个不共线的向量,不妨以,为基底,则,又∵共线,.考点:平面向量与关系向量12、【解析】
由圆上有两个点到直线的距离为3,先求出圆心到直线的距离,得到不等关系式,即可求解.【详解】由题意,圆的圆心坐标为,半径为,则圆心到直线的距离为,又因为圆上有两个点到直线的距离为3,则,解得,即圆的半径的取值范围是.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中合理应用圆心到直线的距离,结合图象得到半径的不等关系式是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.13、【解析】
利用数形结合,讨论的范围,比较斜率大小,可得结果.【详解】如图,当时,,则在点处取最小值,符合当时,令,要在点处取最小值,则当时,要在点处取最小值,则综上所述:故答案为:【点睛】本题考查目标函数中含参数的线性规划问题,难点在于寻找斜率之间的关系,属中档题.14、【解析】
根据图象的最高点得到,由图象得到,故得,然后通过代入最高点的坐标或运用“五点法”得到,进而可得函数的解析式.【详解】由图象可得,∴,∴,∴.又点在函数的图象上,∴,∴,∴.又,∴.∴.故答案为.【点睛】已知图象确定函数解析式的方法(1)由图象直接得到,即最高点的纵坐标.(2)由图象得到函数的周期,进而得到的值.(3)的确定方法有两种.①运用代点法求解,通过把图象的最高点或最低点的坐标代入函数的解析式求出的值;②运用“五点法”求解,即由函数最开始与轴的交点(最靠近原点)的横坐标为(即令,)确定.15、【解析】
由得,结合条件,即可求出,的值,代入求夹角公式,即可求解.【详解】由得与的夹角的余弦值为.【点睛】本题考查数量积的定义,公式的应用,求夹角公式的应用,计算量较大,属基础题.16、【解析】
用辅助角公式把函数解析式化成正弦型函数解析式的形式,最后利用正弦型函数的最小正周期的公式求出最小正周期.【详解】,函数的最小正周期为.【点睛】本题考查了辅助角公式,考查了正弦型函数最小正周期公式,考查了数学运算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)该协会所得线性回归方程是理想的【解析】试题分析:(1)根据所给的数据求出x,y的平均数,根据求线性回归系数的方法,求出系数,把和,代入公式,求出的值,写出线性回归方程;(2)根据所求的线性回归方程,预报当自变量为10和6时的值,把预报的值同原来表中所给的10和6对应的值作差,差的绝对值不超过2,得到线性回归方程理想.试题解析:解:(Ⅰ)由数据求得,,,由公式求得,所以,所以关于的线性回归方程为.(Ⅱ)当时,,;同样,当时,,.所以,该协会所得线性回归方程是理想的.点睛:求线性回归方程的步骤:(1)先把数据制成表,从表中计算出的值;(2)计算回归系数;(3)写出线性回归方程.进行线性回归分析时,要先画出散点图确定两变量具有线性相关关系,然后利用公式求回归系数,得到回归直线方程,最后再进行有关的线性分析.18、(1)见解析(2)【解析】
(1)取的中点,连接、,可得四边形为平行四边形,得到,由线面平行的判定可得平面;(2)连接交于,则为的中点,结合为的中点,得,可得(或其补角)为异面直线和所成角,在正四棱锥中,由为的中点,且,可得,设,求解三角形可得异面直线和所成角的余弦值.【详解】(1)取的中点,连接、,是的中点,且,在正四棱锥中,底面为正方形,且,又为的中点,且,且,则四边形为平行四边形,,平面,平面,平面;(2)连接交于,则为的中点,又为的中点,,又,(或其补角)为异面直线和所成角,在正四棱锥中,由为的中点,且,,设,则,,,则,因此,异面直线和所成角的余弦值为.【点睛】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了异面直线所成角的求法,是中档题.19、(1)(2)【解析】
(1)利用倾斜角与斜率的关系与点斜式求解即可.(2)利用点斜式求解即可.【详解】解:(1)∵所求直线的倾斜角为,斜率,又∵经过,故方程为∴即方程为.(2)∵所求直线在轴上的截距是-5,又有斜率,故方程为∴所求方程为【点睛】本题主要考查了直线斜率与倾斜角的关系以及直线方程的点斜式运用.属于基础题.20、(1),;(2)的最大值是,最小值是.【解析】试题分析:(1)由条件列关于公差与公比的方程组,解得,,再根据等差与等比数列通项公式求通项公式(2)化简可得,再根据等比数列求和公式得,结合函数单调性,可确定其最值试题解析:(1)设等差数列的公差为,等比数列的公比为,则解得,,所以,.(2)由(1)得,故,当为奇数时,,随的增大而减小,所以;当为偶数时,,随的增大而增大,所以,令,,则,故在时是增函数.故当为奇
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六年级上信息技术教学设计-第9课 过程的定义-辽师大版(三起)
- 二零二五版兼职教师人员聘用合同范例
- 2 起点和终点 教学设计-2023-2024学年科学一年级上册教科版
- 事业单位岗位聘用合同书岗位职责
- 五年级语文上册 第一单元 2 落花生教学设计 新人教版
- 二零二五个人对个人租车简单合同范例
- 中央2025年中国贸促会直属单位招聘25人笔试历年参考题库附带答案详解
- 【中学】【育人故事】从对手到队友
- 中学复习课互动与反思的有效策略与实践路径
- 全国电子工业版初中信息技术第四册第1单元1.3活动2《控制系统消息的订阅与控制》教学设计
- 个人财产申报表
- golf高尔夫介绍课件
- 中国古代文学史(二)正式课件
- 物业管理服务品质检查表
- 六年级下册第五单元16表里的生物-表里的生物-学习任务单
- 动火安全作业票填写模板2022年更新
- 2021年12月英语六级听力试题、原文及答案 两套
- 北师版七年级下册数学 第1章 1.6.2 目标三 整式的化简求值 习题课件
- 《贸易商务英语》课件Unit 4 Change
- TCWAN 0027-2022 TCEEIA 584-2022 新能源汽车铝合金电池托盘焊接制造规范
- 煤矿井下绞车房管理制度
评论
0/150
提交评论