小学生数学学习困难的原因及教学对策_第1页
小学生数学学习困难的原因及教学对策_第2页
小学生数学学习困难的原因及教学对策_第3页
小学生数学学习困难的原因及教学对策_第4页
小学生数学学习困难的原因及教学对策_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

小学生数学学习困难的原因及教学对策摘要:形成小学生数学学习困难的原因既有学生内在的因素,也有外在的因素。知识表征不合理、必要的知识缺陷、顿悟思维受阻、思维品质差、消极的情感态度体验是形成小学生数学学习困难的主要心理因素。根据小学生数学学习困难产生的原因,采取有针对性的教学措施消除学生在数学学习中的困难,实现人人在数学学习中得到最大的发展,既是数学教学追求的目标,也是实施素质教育的根本要求。关键词:学习困难;原因分析;教学对策

小学生数学学习困难,是指小学生在数学学习中不能有效地理解和掌握知识,不能利用数学知识解决问题,学习成绩明显落后于同龄儿童。小学生数学学习困难的形成既受教育因素、学习环境等外在因素的影响,也与他们的心理、生理等内在因素有关。消除小学生数学学习的困难,实现人人在数学学习中得到最大的发展,既是数学教学追求的目标,也是实施素质教育的根本要求。本文将从学习心理的角度分析小学生数学学习困难形成的原因,并提出教学对策。一、形成数学学习困难的原因(一)基础知识缺陷认知心理学认为,知识的获得过程既受到个人先天倾向的影响,同时也受到个人已获知识的影响。

[1](184)学生的数学学习也不例外,进一步地说,学生在数学学习中获取新知识的速度与效果,既与新知识同数学认知结构中原有知识的相似性有关,也与数学认知结构中知识的丰富程度、熟练程度等因素有关。学生的数学认知结构,就是他们通过数学学习,在大脑中形成的数学知识网络,这个网络连接的是数学概念之间的关系,当学生面对新的学习情景或运用知识解决问题时,就要通过概念之间的关系从这个网络中去提取所需要的知识,并把它与新的数学知识建立起有意义的联系。但是,学生在进行数学学习或解决数学问题时所需要的知识如果在他们的数学认知结构中欠缺,或者学生头脑中即使有这个知识点,但它却没有与同类知识建立联系,这种提取也将受到阻碍,从而增加学生对数学知识理解和掌握的难度,使他们无法找到解决问题的思路和办法。在学习心理研究中,人们把学生数学认知结构中相关知识的缺陷称作原有固定点知识欠缺或不牢固。所谓原有固定点知识,就是指新知识在数学认知结构中的固定同化点。例如,学生口算70+80=?时,可以用“想7个十加8个十得15个十,即150”这种方法来口算,但对有的学生来说,用这种方法口算会感到困难,其原因有两方面,一是他们不会计算7+8=15,也就是说,口算时,他们在原有数学认知结构中无法提取到7+8=15这个固定同化点知识;二是学生认知结构中虽然有7+8=15这个固定同化点知识,但是不能把70+80通过7个十加8个十得15个十与7+8得15建立联系,同样使得提取受阻而不能口算70+80。(二)知识表征不合理知识在人脑中存储和组织的形式,或者说知识在人脑中呈现的方式称为知识的表征[1](188)心理学中以符号取向的观点把知识分为陈述性知识和程序性知识,不同类型的知识有不同的表征形式,一般来说,概念、命题、图式、表象等是人们头脑中记载陈述性知识的主要方式,而规则式的方式则是表征程序性知识的主要方式。[2]例如,学生学习加法时,对什么是加法就应用概念的形式进行表征,对于怎样计算加法,则应用规则式的方式进行表征,在解决问题时,要建立以问题为中心的图式对信息进行表征,对空间与图形的知识,有时还应将概念、图式或表象结合起来进行表征,如在学习长方形的认识时,在大脑中不但要用概念的方式存储长方形的特征,还应形成长方形的表象。学生在数学学习时对知识的表征不合理主要表现在以下两方面。一是对知识表征采用的方式不恰当,如学习多位数笔算加法时,本应用产生式规则方式去表征计算法则,在大脑中应建立一个产生式系统:先把相同数位对齐→再从个位加起→如果哪一位相加满十→就向前一位进一。在这个系统中学生不但要掌握笔算加法的操作程序,而且还要注意理解在什么情况下进位及进位后怎么办等问题,并通过适量的练习形成计算技能存储在大脑中。但是有的学生习惯用机械记忆的方式“死记”法则,有的教师在教学时也比较重学生对法则的记忆而轻对法则的理解,从而使有的学生计算时出现不把相同数位对齐、遇到相加满十后不进位等情况。二是学生对数学知识表征的清晰度差,从而影响对知识的理解和应用。例如,笔者发现有学生在计算42+29时这样计算:。从这个案例可以看出,该生对42+29的课题印象不清晰,更进一步说,两位数加、减两位数的计算方法在这个学生的大脑中没能形成清晰的表征。(三)顿悟思维受阻学生在数学学习中,对问题的正确理解和解决问题思路的产生经常来自灵感,这就是发生在学生头脑中的顿悟思维。德国的格式塔心理学家们提出了顿悟学习学说,后来美国心理学家加涅坚定不移地认为顿悟是在先期知识的前提下产生的。学生在数学学习中,产生顿悟思维一般要经历三个心理过程。首先是在学习情景中选择有用的信息,排除无关信息的干扰;其次是明确哪些信息是相关的,并把它们进行恰当的组合;最后将这些信息与原有数学认知结构中的有关知识进行比较,看可以与哪些知识建立联系,并利用旧知识去理解新知识,产生解决问题的新思路。[3]但是,学习困难的学生在学习时这些心理过程会受到阻碍,最终不能产生顿悟思维。影响学生顿悟思维产生的因素主要有以下几方面。一是受短时记忆容量影响。心理学实验研究表明,人的短时记忆容量一般为7±2个单位,但是,学生在数学学习中有时遇到的信息往往超过这个容量,善于学习的学生会通过反复读题把有关信息储存在长时记忆中,或者通过书面记录等方式强化对信息的意识。对一些不太会学习的学生来说,往往不善于采用这些方法,从而不能全面清晰地意识到解决问题的相关信息,无法产生解决问题的正确思路。二是不能整体表征知识。学生在数学学习中遇到较复杂的问题时,顿悟思维的产生需要一个以这个问题为中心的一组知识,即问题中心图式。当这个中心图式中的知识未取得联系,或对问题中心图式的某个知识理解不正确,也无法产生顿悟思维。例如,某学校六年级的一道期末考试题:三个同学跳绳,小强跳的是小明的,是小亮跳的,小明跳了160下,小亮跳了多少下?笔者从学生的解答中发现有两种错误倾向:等分成180份,用它可以度量出最小是1°的角,从而使学生理解量角器的制作原理,明确用量角器量角就是要在量角器上去找到与所度量的角相等的一个度数。接着让学生通过对量角器的观察初步感知量角的方法,最后让学生亲自动手度量去体验量角的方法,并形成规则式的表征。(二)加强学习策略的渗透,培养学习能力学生对学习策略的掌握情况,直接关系到他们的学习效果和效率。进一步说,在数学学习中,越是感到学习困难的学生,他们所掌握的学习策略越少,有的甚至没有。因此,消除学生数学学习的困难,应结合具体的教学内容渗透一些常用的学习策略,提高学生的数学学习能力。在信息加工心理学中,研究者一般把学习策略分为认知策略和元认知策略两个领域。认知策略是在认知加工过程中采用的方法或程序。它主要用于处理外部信息。[4](149)认知策略又可以分为一般的认知策略和具体的认知策略。如选择有用信息的策略、记忆复述的策略、组织策略、精加工策略等,均属于一般的认知策略;而当学生面对具体的学习情景时,采用画图、列表、转化、简化、类比、联想、猜想等不同的方法去分析理解问题,则属于具体的认知策略。在学习时用于计划、调节和监控自己的学习过程、方法的策略则属于元认知策略,它主要用于处理内部信息。[4](162)学生在数学学习中进行自我反思、自我检查、自我评价、自我强化等策略,都是元认知策略。在数学教学中加强学习策略的渗透,一方面要把学习策略置于具体的数学教学活动中,当学生面临具体的学习情景时,不但要重视获取知识的结果,还要让学生经历获取知识的过程,感受获取知识的方法和策略。另一方面要不断提高学生对学习策略的掌握水平,首先应让学生结合有关内容的学习,使他们知道运用了什么策略,达到命题表征;然后通过该策略在不同问题情景中的运用,提高学生运用策略的自觉性和熟练度,逐步形成产生式的表征;最后,让学生对学习过程进行自我反思、自我评价,明确策略的适应条件,提高学生对策略的元认知水平。(三)关注数学思考,发展思维能力首先,注重数学思维品质的培养。数学教学的重要目标之一在于发展学生的思维能力,而思维能力的好坏主要集中反映在思维的品质上,所以,思维品质是衡量学生思维优劣的重要标志。前面我们已经论述到,学生的数学思维品质差是形成数学学习困难的重要原因。因此,在数学教学中,要把培养学生良好的思维品质置于教学的核心地位,促进学生思维能力的发展。如针对学习困难学生思维的概括性差的特点,在数学教学中要注意为他们提供形象支撑,让学习困难的学生获得更多的实践操作机会,引导他们在思考问题时,注意联想具体情景和操作活动,在丰富动作思维、形象思维的基础上,逐步发展抽象思维。其次,给学习困难的学生充分的思考时间。有的学习困难的学生思维的敏捷性、灵活性等思维品质较差,他们产生顿悟思维的时间较其他学生更长,如果以优生的思维速度为教学节奏的标准,会使学习困难的学生失去很多思考的机会。因此,在数学教学中,既要关注优秀学生的数学思考,更要照顾学习困难学生的实际需要,多给他们思考的机会和时间,逐步缩小学习困难学生与优生在思维能力上的差距。第三,让学生掌握一些基本的思维方法。学生在数学学习中不能恰当表征知识,解决问题时不能产生思维顿悟,都与他们的数学认知结构中没有一些基本的思维方法有关。因此,在教学中,应结合具体内容的教学进行数学思维方法的渗透,让学生获得一些基本的思维方法,从而掌握解决某些问题的基本套路。例如,在长方形、正方形认识教学中渗透观察与实验的方法,在分类与认识图形的教学中渗透比较与分类的方法,在解决问题的教学中渗透分析与综合的方法,等等。(四)让学生获得积极的情感体验,增强学习动力在数学教学中关注情感、态度与价值观的目标,让学生获得积极的情感体验,不但有利于学生的全面发展,也有利于让学习困难的学生在数学学习中克服心理障碍性的“知—情”编码。首先,给学习困难的学生确定合适的数学学习任务,积极评价他们在学习上的进步,使学习困难的学生在学习中具有成功的体验,树立能学好数学的自信心。其次,提高学生对数学学习的兴趣,让学习困难的学生能主

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论