版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年高考数学模拟预测卷(江苏省南京市适用)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,则(
)A. B. C.0 D.12.已知向量,若,则(
)A. B.C. D.3.已知,则(
).A. B. C. D.4.设函数在区间上单调递减,则的取值范围是(
)A. B.C. D.5.记为数列的前项和,设甲:为等差数列;乙:为等差数列,则(
)A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件6.已知函数在区间上单调递增,则a的最小值为(
).A. B.e C. D.7.已知椭圆的左、右焦点分别为,,直线与C交于A,B两点,若面积是面积的2倍,则(
).A. B. C. D.8.某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有(
).A.种 B.种C.种 D.种二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.有一组样本数据,其中是最小值,是最大值,则(
)A.的平均数等于的平均数B.的中位数等于的中位数C.的标准差不小于的标准差D.的极差不大于的极差10.已知函数,则(
)A.有两个极值点 B.有三个零点C.点是曲线的对称中心 D.直线是曲线的切线11.如图,四边形为正方形,平面,,记三棱锥,,的体积分别为,则(
)A. B.C. D.三、填空题:本题共3小题,每小题5分,共15分.12.已知直线与交于A,B两点,写出满足“面积为”的m的一个值.13.在正四棱台中,,则该棱台的体积为.14.已知双曲线的左、右焦点分别为.点在上,点在轴上,,则的离心率为.四、解答题:本题共5小题,第15小题13分,第16、17小题15分,第18、19小题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15.记的内角A,B,C的对边分别为a,b,c,已知.(1)若,求B;(2)求的最小值.16.记为等差数列的前项和,已知.(1)求的通项公式;(2)求数列的前项和.17.一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好病例组4060对照组1090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.与的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.(ⅰ)证明:;(ⅱ)利用该调查数据,给出的估计值,并利用(ⅰ)的结果给出R的估计值.附,0.0500.0100.001k3.8416.63510.82818.如图,直三棱柱的体积为4,的面积为.(1)求A到平面的距离;(2)设D为的中点,,平面平面,求二面角的正弦值.19.已知直线与抛物线交于两点,且.(1)求;(2)设F为C的焦点,M,N为C上两点,,求面积的最小值.参考答案:1.A【分析】根据复数的除法运算求出,再由共轭复数的概念得到,从而解出.【详解】因为,所以,即.故选:A.2.D【分析】根据向量的坐标运算求出,,再根据向量垂直的坐标表示即可求出.【详解】因为,所以,,由可得,,即,整理得:.故选:D.3.B【分析】根据给定条件,利用和角、差角的正弦公式求出,再利用二倍角的余弦公式计算作答.【详解】因为,而,因此,则,所以.故选:B【点睛】方法点睛:三角函数求值的类型及方法(1)“给角求值”:一般所给出的角都是非特殊角,从表面来看较难,但非特殊角与特殊角总有一定关系.解题时,要利用观察得到的关系,结合三角函数公式转化为特殊角的三角函数.(2)“给值求值”:给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角,有时要压缩角的取值范围.4.D【分析】利用指数型复合函数单调性,判断列式计算作答.【详解】函数在R上单调递增,而函数在区间上单调递减,则有函数在区间上单调递减,因此,解得,所以的取值范围是.故选:D5.C【分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n项和与第n项的关系推理判断作答.,【详解】方法1,甲:为等差数列,设其首项为,公差为,则,因此为等差数列,则甲是乙的充分条件;反之,乙:为等差数列,即为常数,设为,即,则,有,两式相减得:,即,对也成立,因此为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件,C正确.方法2,甲:为等差数列,设数列的首项,公差为,即,则,因此为等差数列,即甲是乙的充分条件;反之,乙:为等差数列,即,即,,当时,上两式相减得:,当时,上式成立,于是,又为常数,因此为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件.故选:C6.C【分析】根据在上恒成立,再根据分参求最值即可求出.【详解】依题可知,在上恒成立,显然,所以,设,所以,所以在上单调递增,,故,即,即a的最小值为.故选:C.7.C【分析】首先联立直线方程与椭圆方程,利用,求出范围,再根据三角形面积比得到关于的方程,解出即可.【详解】将直线与椭圆联立,消去可得,因为直线与椭圆相交于点,则,解得,设到的距离到距离,易知,则,,,解得或(舍去),故选:C.8.D【分析】利用分层抽样的原理和组合公式即可得到答案.【详解】根据分层抽样的定义知初中部共抽取人,高中部共抽取,根据组合公式和分步计数原理则不同的抽样结果共有种.故选:D.9.BD【分析】根据题意结合平均数、中位数、标准差以及极差的概念逐项分析判断.【详解】对于选项A:设的平均数为,的平均数为,则,因为没有确定的大小关系,所以无法判断的大小,例如:,可得;例如,可得;例如,可得;故A错误;对于选项B:不妨设,可知的中位数等于的中位数均为,故B正确;对于选项C:因为是最小值,是最大值,则的波动性不大于的波动性,即的标准差不大于的标准差,例如:,则平均数,标准差,,则平均数,标准差,显然,即;故C错误;对于选项D:不妨设,则,当且仅当时,等号成立,故D正确;故选:BD.10.AC【分析】利用极值点的定义可判断A,结合的单调性、极值可判断B,利用平移可判断C;利用导数的几何意义判断D.【详解】由题,,令得或,令得,所以在,上单调递增,上单调递减,所以是极值点,故A正确;因,,,所以,函数在上有一个零点,当时,,即函数在上无零点,综上所述,函数有一个零点,故B错误;令,该函数的定义域为,,则是奇函数,是的对称中心,将的图象向上移动一个单位得到的图象,所以点是曲线的对称中心,故C正确;令,可得,又,当切点为时,切线方程为,当切点为时,切线方程为,故D错误.故选:AC.11.CD【分析】直接由体积公式计算,连接交于点,连接,由计算出,依次判断选项即可.【详解】设,因为平面,,则,,连接交于点,连接,易得,又平面,平面,则,又,平面,则平面,又,过作于,易得四边形为矩形,则,则,,,则,,,则,则,,,故A、B错误;C、D正确.故选:CD.12.(中任意一个皆可以)【分析】根据直线与圆的位置关系,求出弦长,以及点到直线的距离,结合面积公式即可解出.【详解】设点到直线的距离为,由弦长公式得,所以,解得:或,由,所以或,解得:或.故答案为:(中任意一个皆可以).13./【分析】结合图像,依次求得,从而利用棱台的体积公式即可得解.【详解】如图,过作,垂足为,易知为四棱台的高,
因为,则,故,则,所以所求体积为.故答案为:.14./【分析】方法一:利用双曲线的定义与向量数积的几何意义得到关于的表达式,从而利用勾股定理求得,进而利用余弦定理得到的齐次方程,从而得解.方法二:依题意设出各点坐标,从而由向量坐标运算求得,,将点代入双曲线得到关于的齐次方程,从而得解;【详解】方法一:依题意,设,则,在中,,则,故或(舍去),所以,,则,故,所以在中,,整理得,故.方法二:依题意,得,令,因为,所以,则,又,所以,则,又点在上,则,整理得,则,所以,即,整理得,则,解得或,又,所以或(舍去),故.故答案为:.【点睛】关键点睛:双曲线过焦点的三角形的解决关键是充分利用双曲线的定义,结合勾股定理与余弦定理得到关于的齐次方程,从而得解.15.(1);(2).【分析】(1)根据二倍角公式以及两角差的余弦公式可将化成,再结合,即可求出;(2)由(1)知,,,再利用正弦定理以及二倍角公式将化成,然后利用基本不等式即可解出.【详解】(1)因为,即,而,所以;(2)由(1)知,,所以,而,所以,即有,所以所以.当且仅当时取等号,所以的最小值为.16.(1)(2)【分析】(1)根据题意列式求解,进而可得结果;(2)先求,讨论的符号去绝对值,结合运算求解.【详解】(1)设等差数列的公差为,由题意可得,即,解得,所以,(2)因为,令,解得,且,当时,则,可得;当时,则,可得;综上所述:.17.(1)答案见解析(2)(i)证明见解析;(ii);【分析】(1)由所给数据结合公式求出的值,将其与临界值比较大小,由此确定是否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异;(2)(i)根据定义结合条件概率公式即可完成证明;(ii)根据(i)结合已知数据求.【详解】(1)由已知,又,,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.(2)(i)因为,所以所以,(ii)由已知,,又,,所以18.(1)(2)【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得平面,建立空间直角坐标系,利用空间向量法即可得解.【详解】(1)在直三棱柱中,设点A到平面的距离为h,则,解得,所以点A到平面的距离为;(2)取的中点E,连接AE,如图,因为,所以,又平面平面,平面平面,且平面,所以平面,在直三棱柱中,平面,由平面,平面可得,,又平面且相交,所以平面,所以两两垂直,以B为原点,建立空间直角坐标系,如图,由(1)得,所以,,所以,则,所以的中点,则,,设平面的一个法向量,则,可取,设平面的一个法向量,则,可取,则,所以二面角的正弦值为.19.(1)(2)【分析】(1)利用直线与抛物线的位置关系,联立直线和抛物线方程求出弦长即可得出;(2)设直线:,利用,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海科学技术职业学院《大数据技术原理及应用》2023-2024学年第一学期期末试卷
- 上海科创职业技术学院《中小尺度空间景观设计》2023-2024学年第一学期期末试卷
- 上海交通大学《工程监理》2023-2024学年第一学期期末试卷
- 上海建设管理职业技术学院《提高课羽毛球》2023-2024学年第一学期期末试卷
- 上海建桥学院《农产品高效利用与管理》2023-2024学年第一学期期末试卷
- 上海济光职业技术学院《计算机在材料分析中的应用》2023-2024学年第一学期期末试卷
- 教育决策报告范文模板
- 上海海洋大学《国际贸易实务》2023-2024学年第一学期期末试卷
- 上海海关学院《环境与生命科学基础》2023-2024学年第一学期期末试卷
- 企业员工管理制度选集大合集
- 国开专科《人文英语 2》机考题库
- 客户服务技巧-学会委婉说不
- GB/T 40169-2021超高分子量聚乙烯(PE-UHMW)和高密度聚乙烯(PE-HD)模塑板材
- GB/T 2007.3-1987散装矿产品取样、制样通则评定品质波动试验方法
- GB/T 14456.3-2016绿茶第3部分:中小叶种绿茶
- 《合理利用网络》设计 省赛一等奖
- GA 1800.5-2021电力系统治安反恐防范要求第5部分:太阳能发电企业
- 挡土墙基本知识课件
- 2011年考研英语一试卷真题(后附答案详解)
- 电站锅炉炉膛设计解读
- 接地及防雷保护安全检查表
评论
0/150
提交评论