版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省滁州市池河中学2022年高一数学文摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若函数是定义在上的偶函数,在上是减函数,且,则使得的的取值范围是
(
▲
)
A
B
C
D参考答案:A略2.若用秦九韶算法求多项式f(x)=4x5-x2+2当x=3时的值,则需要做乘法运算和加减法运算的次数分别为()
A.4,2
B.5,3
C.5,2
D.6,2参考答案:C略3.以集合U=的子集中选出4个不同的子集,需同时满足以下两个条件:(1)a、b都要选出;(2)对选出的任意两个子集A和B,必有,那么共有多少种不同的选法?
(
)A.34
B.36
C.35
D.29参考答案:B略4.下列各角中,与60°角终边相同的角是(
)A.-60° B.-300° C.240° D.480°参考答案:B【分析】利用终边相同的角的公式判断分析得解.【详解】由题得60°角在第一象限,-60°角在第四象限,240°角在第三象限,,所以480°角在第二象限,,所以-300°角在第一象限,与60°角终边相同.故选:B【点睛】本题主要考查终边相同的角的公式的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.5.若函数满足,且,,则(
)A、
B、
C、
D、参考答案:B6.下列关系式中,成立的是(
)A. B.C. D.参考答案:A【考点】对数值大小的比较.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】根据对数函数的单调性即可比较大小.【解答】解:∵log34>log33=1,<=0,∴log34>1>,故选:A.【点评】本题考查了对数函数的图象和性质,属于基础题.7.直线x=2的倾斜角为()A.1 B.不存在 C. D.2参考答案:C【考点】I2:直线的倾斜角.【分析】根据直线的倾斜角的定义,求得直线x=2的倾斜角.【解答】解:由于直线x=2垂直于x轴,它的倾斜角为,故选:C.8.下列函数的图象与右图中曲线一致的是A.B.C.D.
参考答案:B略9.设等差数列{an}的前n项和为Sn,且满足,若对任意正整数n,都有,则k的值为(
)A.1008
B.1009
C.2018
D.2019参考答案:B由题意,知将问题转化为求的最小值时的值,根据等差数列的前项和公式,由二次函数知识,当时,有最小值,由,得,同理由,得,则,即,又,所以,故正确答案为B.
10.已知函数为奇函数,且当时,,则(
)(A)
(B)
0
(C)1
(D)2参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.设集合,其中是五个不同的正整数,,若中所有元素的和为,则满足条件的集合的个数为
。参考答案:。解析:,所以。由于中有,因此中有。若,则,于是,无正整数解。若,由于,所以,于是。又因为,当时,;当时,,因此满足条件的共有个,分别为。12.一个正方体的表面展开图的五个正方形如图阴影部分,第六个正方形在编号1—5的适当位置,则所有可能的位置编号为
参考答案:1,4,513.若直线与直线平行,则
参考答案:-4由题意得,两条直线平行,则。14.幂函数f(x)=xα经过点P(2,4),则f()=.参考答案:2考点:幂函数的概念、解析式、定义域、值域.专题:函数的性质及应用.分析:利用幂函数的性质求解.解答:解:∵幂函数f(x)=xα经过点P(2,4),∴2a=4,解得a=2,∴f(x)=x2,∴f()=()2=2.故答案为:2.点评:本题考查函数值的求法,解题时要认真审题,注意幂函数性质的合理运用15.若f(x)=a+是奇函数,则a=.参考答案:﹣【考点】奇函数;函数奇偶性的性质.【分析】充分不必要条件:若奇函数定义域为R(即x=0有意义),则f(0)=0.或用定义:f(﹣x)=﹣f(x)直接求a.【解答】解:函数的定义域为R,且为奇函数,则f(0)=a+=0,得a+=0,得a=﹣,检验:若a=﹣,则f(x)=+=,又f(﹣x)==﹣=﹣f(x)为奇函数,符合题意.故答案为﹣.16.若定义在区间(-1,0)内的函数f(x)=log2a(x+1)满足f(x)>0,则a的取值范围是__
_
___.参考答案:略17.已知tanα=2,则=
.参考答案:1【考点】GI:三角函数的化简求值.【分析】化简所求的表达式为正切函数的形式,代入求解即可.【解答】解:tanα=2,则===1.故答案为:1.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知求(1);(2).参考答案:19.在平面直角坐标系xOy中,已知圆和圆.(1)若直线l过点,且被圆C1截得的弦长为,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆C1和圆C2相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标。参考答案:(1)或,(2)P在以C1C2的中垂线上,且与C1、C2等腰直角三角形,利用几何关系计算可得点P坐标为或。(1)设直线l的方程为y=k(x-4),即kx-y-4k=0.由垂径定理,得圆心C1到直线l的距离d==1,结合点到直线距离公式,得=1,化简得24k2+7k=0,解得k=0或k=-.所求直线l的方程为y=0或y=-(x-4),即y=0或7x+24y-28=0.(2)设点P坐标为(m,n),直线l1、l2的方程分别为y-n=k(x-m),y-n=-(x-m),即kx-y+n-km=0,-x-y+n+m=0.因为直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,两圆半径相等.由垂径定理,得圆心C1到直线l1与圆心C2到直线l2的距离相等.故有,化简得(2-m-n)k=m-n-3或(m-n+8)k=m+n-5.因为关于k的方程有无穷多解,所以有解得点P坐标为或.20.设全集,集合,.(1)当时,求;(2)若,求实数的取值范围;(2)若,求实数的取值范围.参考答案:解:(1)时,,
所以
(2)∵,∴或, 所以,的取值范围是或 (3)∵,∴ ∴且 所以,所求的取值范围是 略21.(12分)如图,在长方体ABCD﹣A1B1C1D1中,AB=2BC=2BB1,沿平面C1BD把这个长方体截成两个几何体:几何体(1);几何体(2)(I)设几何体(1)、几何体(2)的体积分为是V1、V2,求V1与V2的比值(II)在几何体(2)中,求二面角P﹣QR﹣C的正切值.参考答案:考点: 二面角的平面角及求法;棱柱、棱锥、棱台的体积.专题: 空间角.分析: (I)根据空间几何体的形状结合棱锥和棱柱的体积公式即可求几何体(1)、几何体(2)的体积以及求V1与V2的比值.(II)求出二面角的平面角,结合三角形的边角关系即可求出二面角的大小.解答: 解(I)设BC=a,则AB=2a,BB1=a,所以﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)因为﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)所以﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(II)由点C作CH⊥QR于点H,连结PH,因为PC⊥面CQR,QR?面CQR,所以PC⊥QR因为PC∩CH=C,所以QR⊥面PCH,又因为PH?面PCH,所以QR⊥PH,所以∠PHC是二面角P﹣QR﹣C的平面角﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)而所以﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)点评: 本题主要考查空间几何体的体积的计算以及空间二面角的求解,要求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度金融信息服务临时工劳动合同书
- 2025年度商铺租赁合同范本:现代商业综合体租赁管理细则3篇
- 个性化私人合作协议模板2024版B版
- 2025年度个人与个人草原保护管理服务合同范本3篇
- 2025年字画装裱作品定制与售后服务合同3篇
- 2025年度美甲行业品牌形象设计与承包合同
- 2025年精装房装修材料运输与储存合同3篇
- 土地登记相关法律知识-土地登记代理人《土地登记相关法律》押题密卷1
- 2025年度生态环保技术引进承包合同规范范本4篇
- 2025版文化创意设计师专属聘用协议3篇
- 《社会工作实务》全册配套完整课件3
- 单位违反会风会书检讨书
- 2024年4月自考00832英语词汇学试题
- 《电力用直流电源系统蓄电池组远程充放电技术规范》
- 《哪吒之魔童降世》中的哪吒形象分析
- 信息化运维服务信息化运维方案
- 汽车修理厂员工守则
- 公安交通管理行政处罚决定书式样
- 10.《运动技能学习与控制》李强
- 冀教版数学七年级下册综合训练100题含答案
- 1神经外科分级护理制度
评论
0/150
提交评论