版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
§7.3空间点、直线、平面之间的位置关系考试要求1.借助长方体,在直观认识空间点、直线、平面的位置关系的基础上,抽象出空间点、直线、平面的位置关系的定义.2.了解四个基本事实和一个定理,并能应用定理解决问题.知识梳理1.基本事实1:过的三个点,有且只有一个平面.基本事实2:如果一条直线上的在一个平面内,那么这条直线在这个平面内.基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有过该点的公共直线.基本事实4:平行于同一条直线的两条直线.2.“三个”推论推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条直线,有且只有一个平面.推论3:经过两条直线,有且只有一个平面.3.空间中直线与直线的位置关系eq\b\lc\{\rc\(\a\vs4\al\co1(共面直线\b\lc\{\rc\(\a\vs4\al\co1(直线:在同一平面内,有且只有一个公共点;,直线:在同一平面内,没有公共点;)),异面直线:不同在一个平面内,没有公共点.))4.空间中直线与平面、平面与平面的位置关系图形语言符号语言公共点直线与平面相交个平行个在平面内个平面与平面平行个相交个5.等角定理如果空间中两个角的两条边分别对应平行,那么这两个角.6.异面直线所成的角(1)定义:已知两条异面直线a,b,经过空间任一点O分别作直线a′∥a,b′∥b,我们把直线a′与b′所成的角叫做异面直线a与b所成的角(或夹角).(2)范围:.常用结论1.过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.2.分别在两个平行平面内的直线平行或异面.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)没有公共点的两条直线是异面直线.()(2)直线与平面的位置关系有平行、垂直两种.()(3)如果两个平面有三个公共点,则这两个平面重合.()(4)两两相交的三条直线共面.()教材改编题1.(多选)如图是某正方体的平面展开图,则在这个正方体中,下列说法正确的是()A.BM与ED平行B.CN与BM成60°角C.CN与BE是异面直线D.DM与BN是异面直线2.已知a,b是异面直线,直线c平行于直线a,那么c与b()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线3.如图,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;(2)当AC,BD满足条件________时,四边形EFGH为正方形.题型一基本事实的应用例1已知在正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D,B,F,E四点共面;(2)若A1C交平面DBFE于点R,则P,Q,R三点共线;(3)DE,BF,CC1三线交于一点.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华共面、共线、共点问题的证明(1)共面:先确定一个平面,然后再证其余的线(或点)在这个平面内.(2)共线:先由两点确定一条直线,再证其他各点都在这条直线上.(3)共点:先证其中两条直线交于一点,再证其他直线经过该点.跟踪训练1(1)如图,α∩β=l,A,B∈α,C∈β,且A,B,C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必经过()A.点AB.点BC.点C但不过点MD.点C和点M(2)如图所示,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC∥AD且BC=eq\f(1,2)AD,BE∥AF且BE=eq\f(1,2)AF,G,H分别为FA,FD的中点.①证明:四边形BCHG是平行四边形;②C,D,F,E四点是否共面?为什么?________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________题型二空间位置关系的判断命题点1空间位置关系的判断例2(1)(多选)下列推断中,正确的是()A.M∈α,M∈β,α∩β=l⇒M∈lB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α,β重合(2)(2023·龙岩模拟)若a和b是异面直线,b和c是异面直线,则a和c的位置关系是()A.异面或平行 B.异面或相交C.异面 D.相交、平行或异面听课记录:______________________________________________________________________________________________________________________________________命题点2异面直线所成的角例3(1)如图所示,圆柱O1O2的底面半径为1,高为2,AB是一条母线,BD是圆O1的直径,C是上底面圆周上一点,∠CBD=30°,则异面直线AC与BD所成角的余弦值为()A.eq\f(3\r(35),35)B.eq\f(4\r(35),35)C.eq\f(3\r(7),14)D.eq\f(2\r(7),7)(2)(2023·长治模拟)如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=CC1=2,E为BB1上一点,平面AEC1将三棱柱分为上、下体积相等的两部分,则AE与B1C1所成角的余弦值为()A.eq\f(2,3)B.eq\f(2,5)C.eq\f(3,5)D.eq\f(1,3)听课记录:______________________________________________________________________________________________________________________________________思维升华(1)点、直线、平面位置关系的判定,注意构造几何体(长方体、正方体)模型来判断,常借助正方体为模型.(2)求异面直线所成角的方法方法解读平移法将异面直线中的某一条平移,使其与另一条相交,一般采用图中已有的平行线或者作平行线,形成三角形求解补形法在该几何体的某侧补接上同样一个几何体,在这两个几何体中找异面直线相应的位置,形成三角形求解跟踪训练2(1)(多选)如图所示,在正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,以下四个选项正确的是()A.直线AM与CC1是相交直线B.直线AM与BN是平行直线C.直线BN与MB1是异面直线D.直线AM与DD1是异面直线(2)如图,在圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD,SO=OB=3,SE=eq\f(1,4)SB,则异面直线SC与OE所成角的正切值为()A.eq\f(\r(22),2)B.eq\f(\r(5),3)C.eq\f(13,16)D.eq\f(\r(11),3)(3)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为()A.eq\f(\r(3),2)B.eq\f(\r(2),2)C.eq\f(\r(3),3)D.eq\f(1,3)题型三空间几何体的切割(截面)问题例4(1)(多选)用一个平面α截正方体,把正方体分为体积相等的两部分,则下列结论正确的是()A.这两部分的表面积一定不相等B.截面不会是三角形C.截面不会是五边形D.截面可以是正六边形(2)已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°,以D1为球心,eq\r(5)为半径的球面与侧面BCC1B1的交线长为________.听课记录:______________________________________________________________________________________________________________________________________思维升华(1)作截面应遵循的三个原则:①在同一平面上的两点可引直线;②凡是相交的直线都要画出它们的交点;③凡是相交的平面都要画出它们的交线.(2)作交线的方法有如下两种:①利用基本事实3作交线;②利用线面平行及面面平行的性质定理去寻找线面平行及
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度医疗咨询服务正式协议版B版
- 2024年工程人员劳务合作协议模板版B版
- 2024年商业空铺租赁协议细则版B版
- 2024年企业间股权转让标准化协议样本版B版
- 2024年室内隔断装修工程协议标准样式版B版
- 2024专业施工协议模板版B版
- 2024年度35kv电力工程服务协议范本版B版
- 2024年基金公司商业秘密保护合同范本版B版
- 2024年专业协议履行可靠性证明版B版
- 2024年发布:人工智能语音助手开发合同
- 幼儿园伙委会ppt课件(PPT 17页)
- 热控流量液位测量题库(含答案)
- Monster歌词原唱完整版下载
- 语文答题卡-作文格
- 换热器课程设计PPT
- 传热学实验2 空气横掠单管时平均换热系数的测定
- 不锈钢板的理论重量表
- 防蝇、防鼠、防虫检查记录表
- 保函业务基本知识及实务介绍
- 困难诉求台账
- 链轮计算公式
评论
0/150
提交评论