版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
24.1点和圆的位置关系(优秀课件)百步穿杨生活中的数学如果箭看成点,箭靶看成圆,那么上面情境反映了点与圆的位置关系。.o...C....B..A...点在圆内,点在圆上,点在圆外点和圆的位置关系有几种呢?3点与圆的位置关系圆外的点圆内的点圆上的点平面上的一个圆,把平面上的点分成三类:圆上的点,圆内的点和圆外的点。圆的内部可以看成是到圆心的距离小于半径的的点的集合;圆的外部可以看成是到圆心的距离大于半径的点的集合.思考:平面上的一个圆把平面上的点分成哪几部分?4设⊙O
的半径为r,点P到圆心的距离OP=d,则有:点P在⊙O内
点P在⊙O上
点P在⊙O外
点与圆的位置关系d
d
drpdprd
Prd<rr=>r51:⊙O的半径6cm,当OP=6时,点P在
;当OP
时点P在圆内;当OP
时,点P不在圆外。圆上<6≤6随堂练习62.已知⊙O的面积为25π:(1)若PO=5.5,则点P在
;(2)若PO=4,则点P在
;(3)若PO=
,则点P在圆上;(4)若点P不在圆外,则PO__________。随堂练习圆外圆内5≤57大家有疑问的,可以询问和交流可以互相讨论下,但要小声点8如图已知矩形ABCD的边AB=3厘米,AD=4厘米典型习题ADCB(1)以点A为圆心,3厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(B在圆上,D在圆外,C在圆外)(2)以点A为圆心,4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(B在圆内,D在圆上,C在圆外)(3)以点A为圆心,5厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(B在圆内,D在圆内,C在圆上)9·2cm3cm画出由所有到已知点的距离大于或等于2cm并且小于或等于3cm的点组成的图形.O思考10●A●A●B过一点可作几条直线?过两点呢?三点呢?过两点有且只有一条直线(直线公理)经过一点可以作无数条直线;回忆:11问题:确定一个圆需要多少个点?探究之路一个点、两个点还是三个点呢?12
1、平面上有一点A,经过已知A点的圆有几个?圆心在哪里?探究与实践●O●A●O●O●O●O圆心为点A以外任意一点,半径为这点与点A的距离我们的结论:过一点可以画无数个圆13
2、平面上有两点A、B,经过已知点A、B的圆有几个?它们的圆心分布有什么特点?探究与实践●O●O●O●OAB以线段AB的垂直平分线上的任意一点为圆心,以这点到A或B的距离为半径作圆.过两点画无数个。它们的圆心都在线段AB的垂直平分线上。14
3、平面上有三点A、B、C,经过A、B、C三点的圆有几个?圆心在哪里?
归纳结论:
不在同一条直线上的三个点确定一个圆。探究与实践┓●B●C(2)经过B,C两点的圆的圆心在线段AB的垂直平分线上.┏●A(3)经过A,B,C三点的圆的圆心应该这两条垂直平分线的交点O的位置.所以圆O就是所求作●O(1)经过A,B两点的圆的圆心在线段AB的垂直平分线上.作法:15经过三角形三个顶点可以画一个圆,并且只能画一个.一个三角形的外接圆有几个?一个圆的内接三角形有几个?经过三角形三个顶点的圆叫做三角形的外接圆。三角形的外心就是三角形三条边的垂直平分线的交点,它到三角形三个顶点的距离相等。这个三角形叫做这个圆的内接三角形。三角形外接圆的圆心叫做这个三角形的外心。想一想●OABC
有关概念16
分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.锐角三角形的外心位于三角形内,直角三角形的外心位于直角三角形斜边中点,钝角三角形的外心位于三角形外.ABC●OABCCAB┐●O●O做一做17先假设命题的结论不成立,然后由此经过推理得出矛盾(常与公理、定理、定义或已知条件相矛盾),由矛盾判定假设不正确,从而得到原命题成立,这种方法叫做反证法.什么叫反证法?18(2)经过同一条直线三个点能作出一个圆吗??思考l1l2ABCP如图,假设过同一条直线l上三点A、B、C可以作一个圆,设这个圆的圆心为P,那么点P既在线段AB的垂直平分线l1上,又在线段BC的垂直平分线l2上,即点P为l1与l2的交点,而l1⊥l,l2⊥l这与我们以前学过的“过一点有且只有一条直线与已知直线垂直”相矛盾,所以过同一条直线上的三点不能作圆.19反证法常用于解决用直接证法不易证明或不能证明的命题,主要有:(1)命题的结论是否定型的;(2)命题的结论是无限型的;(3)命题的结论是“至多”或“至少”型的.20练一练
1、判断下列说法是否正确(1)任意的一个三角形一定有一个外接圆().(2)任意一个圆有且只有一个内接三角形()(3)经过三点一定可以确定一个圆()(4)三角形的外心到三角形各顶点的距离相等()
2、若一个三角形的外心在一边上,则此三角形的形状为()A、锐角三角形B、直角三角形
C、钝角三角形D、等腰三角形√××√B21课堂练习判断题:1、过三点一定可以作圆 ()5、三角形的外心到三边的距离相等 ()2、三角形有且只有一个外接圆 ()3、任意一个圆有一个内接三角形,并且只有一个内接三角形 ()4、三角形的外心就是这个三角形任意两边垂直平分线的交点 (
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度成都市住宅销售合同标的及权益转让协议
- 2024年度建筑材料购销合同:平板玻璃
- 2024年度版权许可使用合同for游戏软件specifying游戏更新与技术支持
- 2024年度场地租赁合同书电子版
- 2024年度环保项目投资与运营合同
- 2024年度合作开发合同:新能源技术研究与应用
- 2024年度水库移民挡土墙建设合同
- 2024年度房地产买卖合同模板及详细条款
- 人教部编八年级语文上册《名著导读 昆虫记》公开课教学课件
- 2024年度智能家居系统安装合同(含定制要求)
- 现有网络IPV6改造需求方案
- 制造业成本管理培训
- 锁骨下动脉盗血综合征护理课件
- 潜在供应商审核 检查表
- 教职员工准入查询制度
- 健康服务与管理专业职业生涯规划书
- (完整文档版)CRF表
- 平安创建目标责任书
- 掘进自动化工作面研究及应用新的
- 《千姿百态的帽子》课件
- 法理学-法与社会
评论
0/150
提交评论