版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省台州市温岭市泽国镇第四中学2022年高一数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数是上的偶函数,且在上是减函数,若,则的取值范围是----------------(
)
A.
B.
C.
D.参考答案:D略2.如果下边程序执行后输出的结果是990,那么在程序中UNTIL后面的“条件”应为(
)ks5uA.i>10
B.i<8
C.i<=9
D.i<9参考答案:D3.变量满足约束条件,则目标函数的取值范围是(
)A.
B.
C.
D.参考答案:A4.
递减等差数列{an}的前n项和Sn满足:S5=S10,则欲Sn最大,则n=(
)A.10
B.7
C.9
D.7,8参考答案:D5.为了得到函数的图象,只需把函数的图象上所有(
).A.向右平移
B.向右平移
C.向左平移
D.向左平移参考答案:B略6.函数f(x)=sin2(x+)+cos2(x-)-1是()A.周期为π的奇函数 B.周期为π的偶函数C.周期为2π的奇函数 D.周期为2π的偶函数参考答案:A【考点】三角函数的周期性及其求法;二倍角的正弦;二倍角的余弦.【分析】先根据二倍角公式和诱导公式进行化简,最后结合最小正周期T=和正弦函数的奇偶性可求得答案.【解答】解:=sin2x,所以,故选A.7.有4个函数:①②③④,其中偶函数的个数是(A)(B)(C)(D)参考答案:C略8.在映射,,且,则与A中的元素对应的B中的元素为(
)A.
B.
C.
D.参考答案:A9.(3分)已知cosα=,cos(α+β)=,且α,β为锐角,那么sinβ的值是() A. B. C. D. ﹣参考答案:A考点: 两角和与差的正弦函数.专题: 三角函数的求值.分析: 由同角三角函数的基本关系可得sinα和sin(α+β)的值,代入sinβ=sin=sin(α+β)cosα﹣cos(α+β)sinα计算可得.解答: ∵α,β为锐角,cosα=,∴sinα==,又cos(α+β)=,∴sin(α+β)=,∴sinβ=sin=sin(α+β)cosα﹣cos(α+β)sinα==故选:A点评: 本题考查两角和与差的三角函数公式,涉及同角三角函数的基本关系,属基础题.10.函数的零点所在的大致区间为(
)A.(0,1) B.(1,2)
C.(2,3)D.(3,4)参考答案:略二、填空题:本大题共7小题,每小题4分,共28分11.在AABC中,,,D为BC边上的点,且,若,则=_________,参考答案:略12.甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,,,,有以下结论:①当时,甲走在最前面;②当时,乙走在最前面;③当时,丁走在最前面,当时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲。其中,正确结论的序号为
(把正确结论的序号都填上,多填或少填均不得分).参考答案:③④⑤13.已知函数f(x)=,则f(x)的值域是.参考答案:[﹣2,+∞)【考点】对数函数的图象与性质.【专题】转化思想;数学模型法;函数的性质及应用.【分析】先分析内函数y=3+2x﹣x2的图象和性质,进而得到最大值,再由外函数是减函数,得到答案.【解答】解:∵函数y=3+2x﹣x2的图象是开口朝下,且以直线x=1为对称轴的抛物线,故当x=1时,函数取最大值4,故当x=1时,函数f(x)=取最小值﹣2,无最大值,故f(x)的值域是[﹣2,+∞),故答案为:[﹣2,+∞).【点评】本题考查的知识点是对数函数的图象和性质,复合函数的单调性,难度中档.14.设为等差数列的前项和,若,公差,,则正整数的值等于
。参考答案:615.函数y=cos(sinx)是函数(填“奇”“偶”或“非奇非偶”),最小正周期为.值域为
.参考答案:偶,π,[cos1,1].【考点】H1:三角函数的周期性及其求法;3K:函数奇偶性的判断.【分析】根据偶函数的定义即可证明,根据周期的定义即可求出,根据函数的单调性即可求出值域.【解答】解:f(﹣x)=cos(sin(﹣x))=cos(﹣sinx)=cos(sinx)=f(x),又﹣1≤sinx≤1,∴f(x)为偶函数,当x∈时,﹣1≤sinx≤1,∴最小正周期为π,∵cos(sin(x+π))=cos(﹣sinx)=cos(sinx),显然π是一个周期,若该函数还有一个周期T<π,则1=cos(sin0)=cos(sinT),即sinT=2kπ∈,即k只能为0,于是sinT=0,但0<T<π,矛盾!∴最小正周期为π,∵﹣1≤sinx≤1,cos(sinx)是偶函数,区间单调递减∴cos(1)≤cos(sinx)≤cos(0)∴值域为[cos1,1].,故答案为:偶,π,[cos1,1].【点评】本题考查了复合函数的奇偶性,三角函数的周期性质,和值域,属于中档题.16.设等比数列{an}满足a1+a2=–1,a1–a3=–3,则a4=___________.参考答案:-8设等比数列的公比为,很明显,结合等比数列的通项公式和题意可得方程组:,由可得:,代入①可得,由等比数列的通项公式可得.【名师点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.17.若
.参考答案:4略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).高校相关人数抽取人数A18xB362C54y(1)求x,y;(2)若从高校B,C抽取的人中选2人作专题发言,求这2人都来自高校C的概率.参考答案:解:(1)由题意可得,==,所以x=1,y=3.(2)记从高校B抽取的2人为b1,b2,从高校C抽取的3人为c1,c2,c3,则从高校B,C抽取的5人中选2人作专题发言的基本事件有(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),(c1,c2),(c1,c3),(c2,c3),共10种.设选中的2人都来自高校C的事件为X,则X包含的基本事件有(c1,c2),(c1,c3),(c2,c3),共3种,因此P(X)=.故选中的2人都来自高校C的概率为.略19.已知函数(a∈R).(1)判断f(x)的奇偶性;(2)当a=1时,求证:函数y=f(x)在区间上是单调递减函数,在区间(,+∞)上是单调递增函数;(3)若正实数x,y,z满足x+y2=z,x2+y=z2,求z的最小值.参考答案:【考点】函数奇偶性的性质;函数单调性的性质.【专题】综合题;分类讨论;方程思想;消元法;函数的性质及应用.【分析】(1)根据函数奇偶性的定义进行判断即可.(2)根据函数单调性的定义进行证明即可.(3)利用消元法结合函数单调性的性质进行求解.【解答】解:(1)由,函数的定义域为(﹣∞,0)∪(0,+∞),定义域关于原点对称,①当a=0时,f(﹣x)=(﹣x)2=x2=f(x),此时函数f(x)是偶函数;
②当a≠0时,f(1)=1+a,f(﹣1)=1﹣a,此时f(1)≠f(﹣1)且f(1)+f(﹣1)≠0,所以f(x)是非奇非偶函数.(2)证明:?x1,x2∈(0,+∞),且x1<x2,则
=,当时,,,所以,即,所以函数y=f(x)在区间上是单调递减函数;同理:函数y=f(x)在区间上是单调递增函数.(3)因x+y2=z,x2+y=z2,所以将x=z﹣y2代入x2+y=z2可得,(z﹣y2)2+y=z2,整理得(y>0),由(2)知函数在区间上是单调递减函数,在区间上是单调递增函数,所以,此时,,代入原式,检验成立.【点评】本题主要考查函数奇偶性和单调性的判断和证明,以及函数最值的求解,综合考查函数的性质,综合性较强,有一定的难度.20.(本题满分12分)已知函数.(Ⅰ)当时,判断函数的单调性,并证之;(Ⅱ)设,讨论函数的奇偶性,并证明:.参考答案:解:(Ⅰ),设且,则:,
,,即:,∴当时,单调递减;(Ⅱ)的定义域为,且,即为偶函数,当时,,,又为偶函数,∴当时,,,综上有.略21.三人独立破译同一份密码.已知三人各自破译出密码的概率分别为,且他们是否破译出密码互不影响.(Ⅰ)求恰有二人破译出密码的概率;(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.参考答案:解:记“第i个人破译出密码”为事件A1(i=1,2,3),依题意有,且A1,A2,A3相互独立.(Ⅰ)设“恰好二人破译出密码”为事件B,则有B=A1?A2??A1??A3+?A2?A3,且A1?A2?,A1??A3,?A2?A3彼此互斥于是P(B)=P(A1?A2?)+P(A1??A3)+P(?A2?A3)==.答:恰好二人破译出密码的概率为.(Ⅱ)设“密码被破译”为事件C,“密码未被破译”为事件D.D=??,且,,互相独立,则有P(D)=P()?P()?P()==.而P(C)=1﹣P(D)=,故P(C)>P(D).答:密码被破译的概率比密码未被破译的概率大.略22.设数列{an}的前项n和为Sn,若对于任意的正整数n都有.(1)设,求证:数列{bn}是等比数列,并求出{an}的通项公式。(2)求数列{nan}的前n项和.参考答案:(1)见解析;(2).【分析】(1)利用数列的递推关系式,化简,变形为,即可得到,证得数列为等比数列,进而求得的通项公式;(2)利用“乘公比错位相减法”,结合等差数列和等比数列的求和公式,即可求解.【详解】(1)由题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 语文课外活动效果评价方案
- 国际学校劳动教育课程标准与管理
- 光伏逆变器维护与检修方案
- 泌尿外科临床路径管理制度
- 2024年度工程招投标咨询与居间合同
- 2024年成都市二手房购买合同详述
- 房屋工程监理实践经验总结
- 校园暴力事件处理预案
- 2024年市场推广代理合同
- 2024年建筑项目质量监督合同
- SB/T 10895-2012鲜蛋包装与标识
- GB/T 9115-2010对焊钢制管法兰
- GB/T 2423.3-2006电工电子产品环境试验第2部分:试验方法试验Cab:恒定湿热试验
- GB/T 23221-2008烤烟栽培技术规程
- GB/T 16900-2008图形符号表示规则总则
- 城市绿地系统规划 第9章 工业绿地规划
- 辽宁省辽南协作校2022-2023学年高二上学期期末考试语文答案 Word版含解析
- 中职英语统考复习讲课教案
- 决策心理学第一讲课件
- 高中化学趣味化学知识竞赛课件
- 写作指导:顺叙倒叙插叙课件
评论
0/150
提交评论