版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年普通高等学校招生全国统一考试考前演练二数学注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知,则为()A.B.C.D.2.已知复数,则复数的实部与虚部之和为()A.0B.1C.D.23.某骑行爱好者在专业人士指导下对近段时间骑行锻炼情况进行统计分析,统计每次骑行期间的身体综合指标评分与骑行用时(单位:小时)如下表:身体综合指标评分12345用时小时)9.58.87.876.1由上表数据得到的正确结论是()参考数据:.参考公式:相关系数.A.身体综合指标评分与骑行用时正相关B.身体综合指标评分与骑行用时的相关程度较弱C.身体综合指标评分与骑行用时的相关程度较强D.身体综合指标评分与骑行用时的关系不适合用线性回归模型拟合4.已知二项式(其中且)的展开式中与的系数相等,则的值为()A.5B.6C.7D.85.已知函数是定义在上的偶函数,对任意实数.当时..则的值为()A.0B.1C.D.6.已知点,抛物线的焦点为为抛物线上一动点,当运动到时,,则的最小值为()A.6B.5C.4D.37.湖南省衡阳市的来雁塔,始建于明万历十九年(1591年),因鸿雁南北迁徙时常在境内停留而得名.1983年被湖南省人民政府公布为重点文物保护单位.为测量来雁塔的高度,因地理条件的限制,分别选择C点和一建筑物DE的楼顶E为测量观测点,已知点A为塔底,A,C,D在水平地面上,来雁塔AB和建筑物DE均垂直于地面(如图所示).测得,在C点处测得E点的仰角为30°,在E点处测得B点的仰角为60°,则来雁塔AB的高度约为()(,精确到)A.B.C.D.8.已知圆,点在线段上,过点作圆的两条切线,切点分别为,以为直径作圆,则圆的面积的最大值为()A.B.C.D.二、多选题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.已知函数的图象经过点,则下列结论正确的是()A.函数的最小正周期为B.C.函数的图象关于点中心对称D.函数在区间单调递减10.已知函数是定义域为的偶函数,是定义域为的奇函数,且.函数在上的最小值为2.则下列结论正确的是()A.B.在实数集单调递减C.D.或11.在棱长为2的正方体中,分别是侧棱的中点,是侧面(含边界)内一点,则下列结论正确的是()A.若点与顶点重合,则异面直线与所成角的大小为B.若点在线段上运动,则三棱锥的体积为定值C.若点在线段上,则D.若点为的中点,则三棱锥的外接球的体积为三、填空题(本大题共3小题,每小题5分,共15分.)12.在中,,点满足,若,则的值为__________.13.已知,则等于__________.14.已知是椭圆的两个焦点,为椭圆上一点,且,则椭圆的离心率取值范围为__________.四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分13分)已知等差数列的前项和为,且.等比数列是正项递增数列,且.(1)求数列的通项和数列的通项;(2)若求数列的前项和.16.(本小题满分15分)如图1,在五边形中,连接对角线,将三角形沿折起,连接,得四棱锥(如图2),且为的中点,为的中点,点在线段上.(1)求证:平面平面;(2)若平面和平面的夹角的余弦值为,求线段的长.17.(本小题满分15分)三人篮球赛是篮球爱好者的半场篮球比赛的简化版,球场为米,比赛要求有五名球员.某高校为弘扬体育精神,丰富学生业余生活、组织“挑战擂王”三人篮球赛,为了增强趣味性和观赏性,比赛赛制为三局二胜制,即累计先胜两局者赢得最终比赛胜利(每局积分多的队获得该局胜利,若积分相同则加时决出胜负).每局比赛中犯规次数达到4次的球员被罚出场(终止本场比赛资格).该校的勇士队挑战“擂王”公牛队,李明是公牛队的主力球员,据以往数据分析统计,若李明比赛没有被罚出场,公牛队每局比赛获胜的概率都为,若李明被罚出场或李明没有上场比赛,公牛队每局比赛获胜的概率都为,设李明每局比赛被罚出场的概率为且(1)若李明参加了每局的比赛,且(i)求公牛队每局比赛获胜的概率;(ii)设比赛结束时比赛局数为随机变量,求随机变量的分布列和数学期望;(2)为了增强比赛的娱乐性,勇士队和公牛队约定:李明全程上场比赛,但若李明被罚出场,则李明将不参加后面的所有局次比赛.记事件A为公牛队2:0获得挑战赛胜利,求事件A的概率的最小值.18.(本小题满分17分)已知双曲线的左、右焦点为,点在双曲线的右支上.且,三角形的面积为.(1)求双曲线的方程;(2)已知直线与轴交于点,过作斜率不为0的直线,直线交双曲线于两点,直线交双曲线于两点.直线交直线于点,直线交直线于点.试证明:为定值,并求出该定值.19.(本小题满分17分)已知函数是自然对数的底数,.(1)当时,求函数的零点个数;(2)当时,证明:;(3)证明:若,则.2024年普通高等学校招生全国统一考试考前演练二数学参考答案题号1234567891011答案DBCABABDABDACBCD一、选择题(本大题共8小题,每小题5分,共40分.)1.D【解析】由,得,又集合,所以,故选D.2.B【解析】因为,所以复数的实部与虚部之和,故选.3.C【解析】因为相关系数.即相关系数近似为与负相关,且相关程度相当高,从而可用线性回归模型拟合与的关系.所以选项ABD错误,C正确.故选C.4.A【解析】因为且,由题意知,得,求得,故选.5.B【解析】由已知为偶函数,所以,又,所以,所以,所以函数是周期为2的周期函数,.故选B.6.A【解析】由抛物线的定义可知,,所以,所以抛物线的方程为,过点作垂直抛物线的准线,垂足为,则,当且仅当和三点共线时等号成立,故选A.7.B【解析】过点作,交于点,在Rt中,因为,所以,在Rt中,因为,所以,则.故选B.8.D【解析】依题意圆是以为直径的圆,当最大时,圆的面积最大,因为,得,又,当时,此时或,取最大值,所以圆的面积最大值为,故选D.二、多选题(本大题共3小题,每小题6分,共18分.)9.ABD【解析】依题意函数的周期为,所以选项正确;因为,即,又,所以,所以选项B正确;因为,又,所以选项C错误;因为,所以,所以函数在区间单调递减,所以选项D正确,故选ABD.10.AC【解析】为偶函数,,又为奇函数,,,①,即,②由得:,所以选项A正确;因为函数在上均为增函数,故在上单调递增,所以选项错误;因为,所以,又,当,即时等号成立,令,设,对称轴,(1)当时,函数在上为减函数,在上为增函数,则,解得或(舍);(2)当时,在上单调递增,,解得:,不符合题意.综上,所以选项C正确,错误.故选.11.BCD【解析】对于选项,因为,又点与顶点重合,所以是异面直线与所成角,其大小为,故选项错误;对于选项,因为是侧棱的中点,所以,又点在线段上,所以三棱锥的体积(定值),故B正确;对于选项,因为点在线段上,连接,因为平面平面,则,又因为为正方形,则,且平面,则平面,且平面,可得,同理可得,且平面,则平面,因为平面,所以,故C正确;对于选项,因为点为的中点,连接,记与的交点为,取的中点为,连接,则,又,所以点为三棱锥的外接球的圆心,所以三棱锥的外接球的半径为,所以三棱锥的外接球的体积为,故D正确.故选BCD.三、填空题(本大题共3小题,每小题5分,共15分.)12.【解析】由题意可得:.所以.13.【解析】.14.【解析】因为,由椭圆的定义可得,所以.又因为,由余弦定理可得:.化简得,又因为函数在区间上单调递增,所以,所以.可得,所以椭圆的离心率取值范围为.四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.【解析】(1)由题意,设等差数列的首项为,公差为,又,所以解得故.因为数列为各项为正的递增数列,设公比为,且,因为,所以,得,又,所以,即,解得,从而,所以.(2)由(1)得所以,所以数列的前项和(或).16.【解析】(1)连接,则,因为,所以四边形为矩形,所以,因为,且为的中点,所以,且,所以,即又因为,所以平面,又平面,所以平面平面.(2)以为原点,为轴,为轴,为轴建立如图所示的空间直角坐标系,则,设,则,所以,设平面的法向量为,则即取又,设平面的法向量为,则即取,所以,所以,或(舍),线段的长为1.17.【解析】(1)(i)记表示事件“第局公牛队获胜”,表示事件“球员李明第局没有被罚出场”,.由全概率公式公牛队每局比赛获胜的概率为.(ii)由已知随机变量的可能取值为2,3.,,随机变量的分布列如下表:23.(2)依题意事件擂王公牛队获得挑战赛胜利的可能情形是:两局比赛李明均没有被罚出场;第一局李明没有被罚出场,第二局被罚出场;第一局李明被罚出场,第二局不能参加比赛.所以.又,则当时.即事件的概率的最小值为.18.【解析】(1)因为,所以,得,又三角形的面积为,得,所以,得代入双曲线方程得,得(舍),所以双曲线的方程为:.(2)由题意,,且斜率存在且不为0,设,由几何性质可知,联立方程得,恒成立,,同理可得:,直线方程:,令,得,同理:,因为,所以,所以.19.【解析】(1)因为,所以,当时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《建设工程施工合同示范文本》
- 幼儿园健康教案《五官很重要》及教学反思
- 2025年运载火箭控制系统仿真实时处理系统合作协议书
- 后勤部门工作参考计划
- 2025年聚甲醛、聚甲醛合金及改性材料项目发展计划
- 大型型货车租赁合同书
- 特别赞助协议书
- 国际航运船只租赁合同
- 商场租赁合同书
- 2025年古马隆树脂项目建议书
- 2024年03月中国农业发展银行内蒙古分行校园招考拟招录人员笔试历年参考题库附带答案详解
- 云南省昆明市(2024年-2025年小学六年级语文)部编版期末考试(上学期)试卷及答案
- 《婴幼儿常见病识别与预防》课件-婴幼儿湿疹
- 医院感染监测清单
- Q∕SY 05592-2019 油气管道管体修复技术规范
- JIS G3141-2021 冷轧钢板及钢带标准
- 篮球校本课程教材
- 小学数学校本教材(共51页)
- 遗传群体文献解读集
- 工艺装备环保性与安全性的设计要点
- [玻璃幕墙施工方案]隐框玻璃幕墙施工方案
评论
0/150
提交评论