版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
NO.298
MAY
2024
ADBBRIEFS
KEYPOINTS
•Buildingresilientand
responsiblesupplychains
forcriticalmineralsis
strategicallyimportantgiventhetime-boundglobal
goalsoftriplingrenewable
energycapacityanddoublingenergyefficiencyby2030
undertheUnitedArab
EmiratesConsensus(UAEConsensus)adoptedatthe28thConferenceofthe
Parties(COP28).
•Tomeetthegrowingdemandofcleanenergytechnology,
criticalmineralswillhaveto
besustainablysourcedand
processedatunprecedentedscaleandspeedoverthenextfewdecades.
•Fortheresource-rich
countriestoseizeemergingopportunities,criticalmineralproductionandprocessing
mustbeintegratedwith
globalandregionalsupplychainsforcleanenergy
manufacturing.This
requirescreatingbusiness-andinvestment-friendly
environmentstoattractinvestmentandpromotedomesticvalueadditionbeyondmining.
•Regionalcooperationand
engagementbymultilateralorganizationscanhelp
unlockopportunitiesandaidresponsibleandsustainable
environmentalresourcemanagement.
ISBN978-92-9270-690-6(print)
ISBN978-92-9270-691-3(PDF)
ISSN2071-7202(print)
ISSN2218-2675(PDF)
PublicationStockNo.BRF240251-2
DOI:
/10.22617/BRF240251-2
BuildingResilientandResponsibleCriticalMineralsSupplyChains
fortheCleanEnergyTransition
Cyn-YoungPark
Director,RegionalCooperationand
IntegrationandTradeDivisionClimateChangeandSustainable
DevelopmentDepartment
AsianDevelopmentBank
AnnaCassandraMelendez
Consultant,RegionalCooperationandIntegrationandTradeDivision
ClimateChangeandSustainableDevelopmentDepartment
AsianDevelopmentBank
CRITICALMINERALSFORTHECLEANENERGYTRANSITION
Thedramaticshiftfromfossilfuelstocleanenergyhastrainedaspotlightonthevitalroleofmineralsandmineral-dependentsupplychainsintheenergytransition.Comparedwithfossilfuel-basedtechnologies,cleanenergytechnologiesarefarmoremineral-intensive
throughouttheirlifecycles(Figure1).
Aslow-carbontechnologiesrelyheavilyonmineralinputs,demandformineralsrequiredforthecleanenergytransitionisexpectedtorisedramatically.Meetingthisdemandis
ofstrategicimportancetoall.Althoughnostandarddefinitionofacriticalmineralexists,somemineralscanbeconsideredcriticalgiventheirimportanceinaparticularsetting
(inthiscase,theenergytransition),availabilityandabundance,andsubstitutability.
TheInternationalEnergyAgency(IEA)definescriticalmineralsasthosebothessentialtotheenergytransitionandwhosesupplymaybedisruptedbymarketshocksorgeopoliticalevents.TheIEA’sCriticalMineralsDataExplorer(IEA2023a)listsnearly40minerals
essentialforcleanenergytechnologies.
Note:ADBrecognizes“America”astheUnitedStatesand“China”asthePeople’sRepublicofChina.
2
ADBBRIEFSNO.298
Figure1:MineralsUsedinCleanEnergyTechnologiesComparedtoOtherPowerGenerationSources,2021
(kilogramspermegawattcapacity)
Offshorewind
Onshorewind
SolarPV
Nuclear
Coal
Naturalgas
02,0004,0006,0008,00010,00012,00014,000
kg/MW
CopperNickelManganeseCobaltChromiumMolybdenumZincRareearthelements
16,00018,000
SiliconOthers
kg/MW=kilogrampermegawatt,PV=photovoltaic.
Source:InternationalEnergyAgency.2021.
/data-and-statistics/charts/minerals-used-in-clean-energy-technologies-compared-to-
other-power-generation-sources
.
Figure2matchescriticalmineralstoselectedcleanenergytechnologiesinwhichtheyareneeded.
TheWorldBank(2020)hasdevelopedaframeworkforclassifyingcriticalmineralsintodifferentcategoriesofdemandrisk,dependingonprojecteddemandforarangeofcleanenergytechnologies.Theclassificationframeworkhasfourmaincategoriesofcriticalminerals:
(i)High-impactandcross-cuttingminerals:includeminerals,suchasaluminum,thatwillbeusedinawiderangeof
technologiesandfaceasignificantincreaseinproductiontomeettheprojecteddemandinthecleanenergytransition.
(ii)High-impactminerals:includecobalt,graphite,andlithiumwhichareconcentratedinspecifictechnologies,butare
expectedtoexperiencesignificantincreasesinrelativedemand,drivenlargelybyenergystorageneeds.
(iii)Medium-impactminerals:includecertainrareearth
elements(REEs)whichmaynotbeusedinawiderange
oftechnologies,butareessentialforspecifictechnologies.Theseareexpectedtofaceamoderateincreaseindemand.
(iv)Cross-cuttingminerals:includecopperandnickelwhichare
usedacrossawiderangeoftechnologiesandconsideredasfundamentalelementsfortheenergytransition.
Thispolicybriefprovidesanoverviewofstrategicpolicyissuessurroundingcriticalmineralssupplychainsthatwillhavetobeconsideredinplanningsupportforthecleanenergytransition.
Theanalysisfocusesonsixcriticalmineralsfortheenergytransition:
copper,cobalt,graphite,lithium,nickel,andREEs.1Thesemineralsareselectedbasedontheirimportanceforcleanenergytechnologies,
projecteddemand,andvulnerabilitiestosupplyshocks.Copperisanessentialcomponentofwiringinelectricalnetworksandallelectricity-relatedtechnologies,includingpowergrids.Cobalt,graphite,and
lithiumarekeycomponentsofbatteriesforelectricvehicles(EVs)andenergystoragesystems.NickelisnecessaryforEVs,energystorage,
solarandwindenergy,otherlow-emissionspowergeneration,and
hydrogentechnologies.REEsarevitalforpermanentmagnetsused
inEVsandwindturbines(IEA2021,2023a,2023b).Inthefollowingsections,thebriefreviewskeymarkettrendsandoutlooks,assesses
developmentconstraintsandrisks,takesstockofcountryexperiencesandpolicyresponses,andputsforwardpolicyrecommendations.
1TheREEsconsistof15elementsinthelanthanidesgroup,plusscandiumandyttrium.TheREEsneodymium,dysprosium,praseodymium,andterbiumareparticularlycriticalforcleanenergytechnologies(IEA2021).
3
BuildingResilientandResponsibleCriticalMineralsSupplyChainsfortheCleanEnergyTransition
Figure2:CriticalMineralsforSelectedCleanEnergyTechnologies
GeothermalHydroNuclearBioenergy
ElectricityNetworks
Concentrated
SolarHydrogen
WindPower
Solar
Photovoltaic
Electric
vehiclesa
Steel
CopperAluminum
Nickel
Zinc Dysprosium NeodymiumPraseodymium Silicon Terbium Cobalt Graphite Manganese Silver Cadmium Gallium Iridium Lithium PlatinumTellurium
Uranium
ImportanceLowtonone
●.High
aIncludesenergystorage.
Source:Exhibitfrom“
.%20"
Theraw-materialschallenge:Howthemetalsandminingsectorwillbeatthecoreofenablingtheenergy
transition,”January2022,McKinsey&Company,Copyright(c)2024McKinsey&Company.Allrightsreserved.Reprintedbypermission.
DEMANDANDSUPPLYPROJECTIONSFORCRITICALMINERALS
Availableestimatesoffuturedemandforcriticalmineralsvary
widelyduetodifferencesinthecoveredtechnologiesandminerals,methodologies,andassumptions.Regardlessofthesedifferences,
criticalmineralswillhavetobesourcedandprocessedatanunprecedentedscaleandspeedoverthenextfewdecadestoachievenet-zerotargets.
TheIEAhasdevelopedthreescenariosthatassumedifferentlevelsofambitionandalignmentwiththeParisAgreement:
(i)ThemoderateStatedPoliciesScenario(STEPS)includes
currentpoliciesorpoliciesthatgovernmentsaredeveloping.
(ii)TheAnnouncedPledgesScenario(APS)assumesalllong-termemissionsandenergyaccesspledgesarefullyimplemented
ontime.TheAPSlimitstemperatureriseto1.7°Cabovepreindustriallevelsin2100(witha50%probability).
(iii)TheNetZeroEmissionsby2050Scenario(NZE)isthemostambitiousscenarioofall.Itassumesevenfasterdeploymentofcleanenergytechnologiestolimitglobalwarmingto1.5°C(IEA2023b).2
Table1showstheestimateddemandforcriticalmineralsundereachofthethreescenarios,whileFigure3showsprojectedgrowthindemandrelativeto2022.Overthenext2–3decades,demandfortotalcriticalmineralsisexpectedtodoubleundertheSTEPS,morethantriple
undertheAPS,andmorethanquadrupleundertheambitiousNZE.Demandforrawmineralsisprojectedtocontinuetoincreaseuntil2050,whentheirrecyclingwillhavebecomemorecommonplace.
2SeetheCriticalMineralsDataExplorerMethodologicalNotesformoreinformation:
/assets/e3888347-21a4-4c30-97a7-
7075a3bc48f7/CMDataExplorerMethodology.pdf
.
4
ADBBRIEFSNO.298
Table1:MineralDemandforCleanEnergyTechnologiesbyMineral,2022,2030,2040,and2050
(kiloton/s)
Critical
Mineral
BaseYear
StatedPoliciesScenario
AnnouncedPledgesScenario
NetZeroEmissionsby2050
2022
2030
2040
2050
2030
2040
2050
2030
2040
2050
Copper
5,735.9
9,298.3
9,804.6
10,647.5
11,363.7
15,100.3
15,717.2
15,731.6
20,678.1
17,351.4
Cobalt
68.2
79.4
110.1
145.6
121.6
220.6
295.8
205.4
258.5
290.7
Graphite
587.0
1,697.6
1,957.8
1,322.6
2,604.6
4,056.9
2,980.9
4,449.9
5,353.4
3,468.2
Lithium
73.2
239.8
460.1
490.4
368.0
951.9
1,089.2
628.4
1,187.4
1,178.5
Nickel
456.7
1,381.3
2,046.4
1,867.0
2,131.9
3,765.3
3,882.7
3,452.2
4,344.8
3,764.0
REEs
12.7
29.0
34.6
44.3
40.1
69.7
84.3
65.0
69.1
72.2
Others
1,761.6
2,577.0
3,361.7
4,230.8
3,645.3
5,726.5
7,189.7
6,648.9
7,474.7
7,529.9
Total
8,695.2
15,302.4
17,775.3
18,748.2
20,275.1
29,891.2
31,239.8
31,181.4
39,366.0
33,654.9
REE=rareearthelement.
Source:AsianDevelopmentBankcalculationsusing
statistics/data-tools/critical-minerals-data-explorer
datafromtheInternationalEnergyAgencyCriticalMineralsDataExplorer.
/data-and-
(accessed11October2023).
Figure3:GrowthinDemandforSelectedMineralsfromCleanEnergyTechnologies,
byScenario—2022,2030,2040,and2050
(kiloton/s)
kt
50,000
45,000
40,000
35,000
30,000
25,000
20,000
15,000
10,000
5,000
-
4.5x
39,366
3.9x
33,655
36x
36x
3.4x
.
.
31,240
31,181
29,891
2.3x
22x
20,275
20x
.
18,748
.
1.8x
17,775
15,302
8,695
203020402050203020402050203020402050
2022StatedPoliciesScenarioAnnouncedPledgesScenarioNetZeroEmissionsScenario
CopperCobaltGraphiteLithiumNickelREEsOthersTotalCriticalMinerals
kt=kiloton,REE=rareearthelement.
Note:Textinredshowsincreaseindemandindexedto2022.
Source:AsianDevelopmentBankcalculationsusingdatafromtheInternationalEnergyAgencyCriticalMineralsDataExplorer.
/data-
and-statistics/data-tools/critical-minerals-data-explorer
(accessed11October2023).
Thehugespikeindemandrelativeto2022undertheNZEscenariohighlightstheimportanceofactionoverthenextcoupleofdecades.Toachievenetzeroby2050,demandforlithiumwouldbeexpectedtoincreaserelativeto2022byasmuchas8.6times(8.6x)in2030,
16.2xin2040,and16.1xin2050.Nickelwouldhavethesecond-
largestjumpindemand,growingby7.6xin2030,9.5xin2040,
and8.2xin2050.Graphitecomesthirdwithprojecteddemand
increasingby7.6xin2030,9.1xin2040,and5.9xin2050(Table1).
5
BuildingResilientandResponsibleCriticalMineralsSupplyChainsfortheCleanEnergyTransition
Figure4showsprojecteddemandforeachcriticalmineralbytechnology
use.ThetrendsunderscoretheimportanceofEVsandbatterystorageaskeydriversofdemandgrowth.Theshifttolow-carbonpower
generationwillalsoincreasemineraldemand.Thesetrajectoriesandriskscouldeasilychangeinthefuture,dependingontechnological
developments,policychanges,andmarketandgeopoliticaldynamics.
Whileavailablereservesofcriticalmineralsarebelievedtobe
sufficienttomeetlong-termdemand(UnitedStatesGeological
Survey2023),shortfallsinafewmineralsareprojectedinthenearto
mediumterm.Figure5showstheIEA’slatestdataontheanticipatedsupply3ofselectedcriticalmineralsby2030andcomparesthese
againstthe2030projectedrequirementsundertheAPSandNZE
scenarios.In2030,cobaltisprojectedtobeinsurplusrelativetothe
APSbutwillfallshortofprojectedrequirementstoachievenetzeroby2050(NZE).Themedium-termanticipatedsupplyofcopper,lithium,andnickelwillfallshortofmeetingprojectedrequirementsunderbothscenarios.ThestarkestshortfallisforlithiumunderNZE(Figure5).
Figure4:MineralDemandforCleanEnergyTechnologiesbyMineralandTechnology,2022and2040
(kiloton/s)
kt
0
Copper
2022
2030
2040
2050
StatedPoliciesScenario
2030
2040
2050
AnnouncedPoliciesScenario
2030
2040
2050
NetZeroEmissionsScenario
ElectricvehiclesElectricitynetworksGridbatterystorage
HydrogentechnologiesSolarPVWind
Otherlow-emissionspowergeneration
Graphite
6,000
5,000
4,000
3,000
2,000
1,000
2022
2030
2040
2050
StatedPoliciesScenario
2030
2040
2050
Announced
PoliciesScenario
2030
2040
2050
NetZero
Emissions
Scenario
ElectricvehiclesElectricitynetworksGridbatterystorage
HydrogentechnologiesSolarPVWind
Low-emissionspowergeneration
kt
2022
2030
2040
2050
2030
2040
2050
2030
2040
2050
300
250
200
150
100
50
0
StatedPolicies
Announced
NetZero
Scenario
PoliciesScenario
EmissionsScenario
Cobalt
350
ElectricvehiclesElectricitynetworksGridbatterystorage
HydrogentechnologiesSolarPVWind
Low-emissionspowergeneration
kt
1,400
1,200
1,000
800
600
400
200
0
2030
2040
2050
2030
2040
2050
2030
2040
2050
2022
StatedPoliciesScenario
Announced
PoliciesScenario
NetZero
EmissionsScenario
Lithium
ElectricvehiclesElectricitynetworksGridbatterystorage
HydrogentechnologiesSolarPVWind
Low-emissionspowergeneration
continuedonnextpage
3Anticipatedsupplytakesintoconsiderationproductionfromannouncedminingprojects.
6
ADBBRIEFSNO.298
Figure4:continued
Figure4:MineralDemandforCleanEnergyTechnologiesbyMineralandTechnology,2022and2040
(kiloton/s)
kt
2022
2030
2040
2050
2030
2040
2050
2030
2040
2050
0
Nickel
5,000
4,500
4,000
3,500
3,000
2,500
2,000
1,500
1,000
500
StatedPoliciesScenario
Announced
PoliciesScenario
NetZero
Emissions
Scenario
Electricvehicles
SolarPV
GridbatterystorageWind
HydrogentechnologiesOtherlow-emissions
powergeneration
Neodymium(REE)
kt
2022
2030
2040
2050
2030
2040
2050
2030
2040
2050
70
60
50
40
30
20
10
0
StatedPolicies
Announced
NetZero
Scenario
PoliciesScenario
EmissionsScenario
Electricvehicles
SolarPV
GridbatterystorageWind
HydrogentechnologiesOtherlow-emissions
powergeneration
kt=kiloton,PV=photovoltaic,REE=rareearthelement.
Source:AsianDevelopmentBankcalculationsusingdatafromtheInternationalEnergyAgencyCriticalMineralsDataExplorer.
/data-
and-statistics/data-tools/critical-minerals-data-explorer
(accessed11October2023).
Figure5:AnticipatedPrimaryProductionandSupplyRequirementsofSelectedMineralsfor2030intheAnnouncedPolicyScenarioandNetZeroEmissionsScenarios
Copper
Lithium
Nickel
Cobalt
Mt
40
30
20
10
2022
Anticipated
supply
APS
NZE
2030
ktLi
800
600
400
200
2022
Anticipated
supply
APS
NZE
2030
Mt
8
6
4
2
Anticipated
supply
APS
NZE
2022
2030
kt
400
300
200
100
2022
Anticipated
supply
APS
NZE
2030
APS=AnnouncedPolicyScenario,kt=kiloton,Mt=megatonne,NZE=NetZeroEmissionsby2050Scenario.
Source:IEACriticalMineralsMarketReview.2023.
/assets/afc35261-41b2-47d4-86d6-d5d77fc259be/
CriticalMineralsMarketReview2023.pdf
.
7
BuildingResilientandResponsibleCriticalMineralsSupplyChainsfortheCleanEnergyTransition
RISKSFACINGMINERAL-DEPENDENTCLEANTECHNOLOGYSUPPLYCHAINS
Mineral-dependentcleantechnologysupplychainsarehighly
complex(Figure6).Therelevantsupplychainscancovereverything
fromextractingrawmaterialstoimmediateprocessing,purification
andrefining,componentmanufacturingforcleanenergytechnologies,andrecyclingofmineralwastes.Thedynamicsineachstepofthe
supplychaincandiffergreatlyfromonecleantechnologytoanother.Supplychainsalsoinvolveextensiveglobalnetworksofsupplies,witheachsegmentofthechaintypicallyinvolvingmultipleproducers.
Usinglithiumasanexample,whereasthebiggestsourcesarefoundinLatinAmericaandAustralia,theprocessingandrefiningoflithiumtakesplaceinAsia.Oncerefined,lithiumisusedtomanufactureEVbatteriesinAsia,Europe,andtheUnitedStates(US)(Figure7).
Development
Mining-
Geological
resources
Metallurgy/refining
Oreprocessing
Smelting
andrefining
Endproduct
Manufacturing
Components
products
Figure6:SchematicRepresentationofaMineral-DependentSupplyChain
Exploration
Purification
Production
wastecollection
Preparation–dismantling,crushing,separation
Secondaryrecycling
Primaryrecycling
ProductionwasteProductionwasteEnd-of-life
1collectioncollectionproducts,waste
Semifinished
Source:Ayuketal.2020,citedinInternationalRenewableEnergyAgency(IRENA).2023.GeopoliticsoftheEnergyTransitionCriticalMinerals.AbuDhabi.
/Publications/2023/Jul/Geopolitics-of-the-Energy-Transition-Critical-Materials
.
Figure7:SchematicRepresentationofaBatterySupplyChain
Li
Mine
Refinery
Batterymanufacturer
Recycler
Landfill
(variouslocations)
NiLi
Mn
Co
Ni
Co=cobalt;Li=lithium;Mn=manganese;Ni=nickel.
Source:S.Daran.d.TheLithiumSupplyChain.
/decentralizing-the-lithium-supply-chain
.
8
ADBBRIEFSNO.298
Despitetheircomplexity,mineral-dependentcleantechnology
supplychainsarehighlyconcentratedgeographically(Figure8).Attheupstreamside,afewproducers—mostlydevelopingcountries—arevitalformanycriticalminerals.TheDemocraticRepublicof
Congo(DRC)isthelargestproducerofcobaltandthethird-largestsourceofcopper.ThePeople’sRepublicofChina(PRC)isthe
biggestproducerofgraphiteandREEs,andthethird-biggestsourceoflithium.Indonesiaisamajorproducerofcobalt,copper,and
nickel.ThePhilippinesisamajorproducerofnickel.However,thebulkofextractedmineralsareexportedraw.
Geographicconcentrationisevenhigherintheprocessingstage,
withthePRCaccountingfor68%and73%ofglobalnickelandcobaltrefiningcapacity,and70%and85%ofglobalcathodesandanodes
productioncapacity,respectively(CastilloandPurdy2022).Indeed,
geographicconcentrationisseenthroughoutthesupplychainsof
cleanenergytechnologies(Figure9).Forexample,thePRC,Japan,andtheRepublicofKoreadominatethemidstreamsectionofthebatterymaterialssupplychain.ThePRCandIndiaarealsokeyplayersinwindturbinesandcomponentsalongsidetheUS,Spain,andGermany.
Meanwhile,thedownstreamsegmentisdominatedbyafewmatureplayersinthePRC,theUS,andtheEuropeanUnion(EU).
Figure8:LargestProducersandUsersofSelectedCriticalMineralsintheEnergyTransition
CleantechnologiesMiningProcessingBatterymaterialBatterycell/packEVdeployment
Copper
Chile
Peru
Chile
PRC
ROK
Japan
PRC
US
ROK
PRC
US
EU
PRC
Lithium
Chile
PRC
Chile
Australia
PolysiliconSolarpanelEVinstallation
Nickel
Cobalt
REEs
Indonesia
PRC
Indonesia
PRC
ROK
Germany
PRC
ROK
Canada
Philippines
EU
US
EU
US
PRC
Windinstallation
PRC
DRC
PRC
Windturbineandcomponents
PRC
PRC
PRC
India
US
Spain
Germany
DRC=DemocraticRepublicofCongo,EU=EuropeanUnion,EV=electricvehicle,PRC=People’sRepublicofChina,PV=photovoltaic,REE=rareearthelement,ROK=RepublicofKorea,US=UnitedStates.
Source:InternationalEnergyAgency.2021.TheRoleofCriticalMineralsinCleanEnergyTransitions.Paris.
/reports/the-role-of-critical
-minerals-in-clean-energy-transitions.
Figure9:ShareofTopThreeEconomiesinTotalProductionandProcessingofSelectedCriticalMinerals,2022
Extraction
Processing
Copper
Nickel
Cobalt
Lithium
Graphite
REEs
DRC
IndonesiaPhilippinesPRC
US
RussianFederation
Argentina
Chile
Japan
Mozambique
Peru
Finland
Canada
Zambia
Madagascar
Malaysia
Estonia
Australia
2019top3share
25%50%75%100%
50%
75%
25%
100%
Copper
Nickel
Cobalt
Lithium
Graphite
REEs
DRC=DemocraticRepublicofCongo,PRC=People’sRepublicofChina,US=UnitedStates,REE=rareearthelement.
Source:InternationalEnergyAgency.2023.CriticalMineralsMarketReview.2023.Paris.
/assets/afc35261-41b2-47d4
-86d6-d5d77fc259be/CriticalMineralsMarketReview2023.pdf.
VIE
9
BuildingResilientandResponsibleCriticalMineralsSupplyChainsfortheCleanEnergyTransition
Tradeflowsalsoreflecttheintricateconnectionsofcriticalmineralssupplychainsaroundtheworld(Figure10).Somedominantplayers,particularlythePRC,playanoutsizedroleinglobalsupplychainsforcriticalmineralsfromupstreamtodownstream.Forexample,the
DRCleadsglobalcobaltexports,with67%ofthismarket.ThePRCisthetopimporter,signifyingitscentralroleincobaltprocessingalongwithotherkeyplayersliketheUSandBelgium.ThePRCisalsothe
largestexporterofgraphite,withan80%shareofglobalexports.
IndustrialnationsincludingFrance,Germany,andAustriaarekey
nodesintheinterconnectedglobalgraphitetrade.Forlithium,the
PRCisthebiggestproducerandexporteroftheprocessedmineral,
withtheUS,theRepublicofKorea,andGermanyasmajorimporters.
IndonesiaistheleadingexporterofnickelwiththePRCasthe
primaryimportdestination.ThePRCisthelargestexporterofREEsandakeynodeforimportingfromothermajorexporters,highlightingitscentralroleinproductionandrefinement.
Miningprojectsandcleanenergytechnologymanufacturing,besides
theiroverrelianceonafewsuppliersandeconomies,tendtohavelongleadtimesandcomewithconsiderablefinancialrisks.Minestakeanaverageof16.5yearstomovefromdiscoverytoproduction(IEA2021).Cleanenergytechnologymanufacturingfacilities
takebetween3and5yearstodevelop,dependingonthetypeoftechnology.
Figure10:TradeNetworksofSelectedCriticalMinerals,2022
(a)Cobalt(HS282200,810520,810530,810590)(b)Graphite(HS250410,250490,380110,
380120,380190,681510,690310,854511,
854519,854520,854590)
USA
BEL
SIN
MOZ
ZAF
HKG
NOR
9.7%4.1%4.5%
16.7%
1.3%
ZMB
ROW
1.3%
3.2%
3.2%
COD
0.5%0.31%
IRE
1.5%
0.6%
1.1%
UKG
0.7%
0.4%
1.5%
0.6%
25.2%
0.3%
0.3%
NET
GER
0.7%0.5%
TAP
0.2%
0.4%
0.3%
JPN
0.3%
0.6%
PRC
FRA
0.2%
1.6%
0.4%0.3%
KOR
SPA
CAN
POL
CAN
PRC
KOR
0.6%
1%
0.2%
BRA
0.1%
0.6%
0.8%
TUR
0.1%
1%
0.5%
MEX
0.6%
0.3%
ITA
0.1%
3.9%
FRA
0.7%
0.2%
0.6%
0.1%
0.7%
USA
0.1%
0.5%4.6%
AUT
0.3%0.4%
○0.1%○7.4%
6.6%45.2%○
HUN
ROW
MAL
8.6%
RUS
6.3%
5.9%
GER
(c)Lithium(HS282520,283691,850650,850760)(d)Nickel(HS75,282540,282735,283324,381511,741122)
2.4%
6.6%
GER
3%
1.1%
0.5%
PRC
KOR
7.3%
0.4%
1%
0.6%
2.9%19.8%
8.7%
0.2%
2%2.6%
5%
NET
JPN
ROW
CHL
3.7%
BEL
MEX
0.2%
FRA
1.4%
1%
0.4%
0.3%
USA
POL
ITA
0.4%
0.6%
CZE
0.7%
0.6%
1.2%
0.1%
0.3%
HUN
1%
UKG
CAN
0.8%1%
3.5%
1%
FRA
MEX
0.3%2.4%
1.3%
1%
NOR
1%
1%
5%
5%
0.7%
0.8%
NET
GER
JPN
0.4%
0.2%
3%
1%
11%
AUT
TAP
0.1%
ROW
0.7%
0.4%
IND
0.02%
INO
3.9%
MAL
PRC
0.2%0.3%
3%0.9%
USA
0.5%
0.5%
KOR
ITA
continuedonnextpage
10
ADBBRIEFSNO.298
4%
17%
Figure10:TradeNetworksofSelectedCriticalMinerals,2022
(e)Rareearthelements(HS280530;284610;284690)
SAUGER
MEX
0.1%0.4%
0.1%
0.6%
ROW
USA
5%
1%
0.8%3%
NET
0.5%
0.02%
1%
PRC
UKG
0.01%
0.1%7%
3%
2%
21%
FRA
1%
0.02%
THA
0.3%
3%
1%3%
KOR
1%1%
MAL
8%
JPN
PHI
2%
1%
VIE
TAP
AUT=Austria;BEL=Belgium;BRA=Brazil;CAN=Canada;CHL=Chile;CZE=CzechRepublic;DRC=DemocraticRepublicofCongo;FRA=France;
GER=Germany;HKG=HongKong,China;HS=harmonizedsystem;HUN=Hungary;IND=India;INO=Indonesia;IRE=Ireland;ITA=Italy;JPN=Japan;KOR=RepublicofKorea;MAL=Malaysia;MEX=Mexico;MOZ=Mozambique;NET=Netherlands;NOR=Norway;PHI=Philippines;POL=Poland;
PRC=People’sRepublicofChina;ROW=restoftheworld;RUS=RussianFederation;SAU=SaudiArabia;SIN=Singapore;SPA=Spain;SRI=SriLanka;TAP=Taipei,China;THA=Thailand;TUR=Türkiye;UKG=UnitedKingdom;USA=UnitedStates;VIE=VietNam;ZAF=SouthAfrica;ZMB=Zambia.
Notes:Thenodesizesrepresenttheeconomy’stotaltrade(exportsplusimports)inacommoditygroup.Linethicknessrepresentsthevalueofflowsbetweeneconomies.Eachlineshowstheshareofexportstothetotalglobalexportsofthecommoditygroup,withonlyexportswithhighvaluesrepresented.Thearrowcolorvariestohighlightflowdirections.HScodesarebasedon
https://oma.on.ca/en/ontario-mining/2022_OMA_Mineral_Profiles.pdf.
Source:AsianDevelopmentBankcalculationsusingdatafromUnitedNations.CommodityTradeDatabase.
(accessed30October2023).
Thepricevolatilityisoftenanotablefeatureofmetalsandminerals.AsillustratedinFigure11,thepricesofcobalt,copper,andnickel
werehighlyvolatilebetween2019and2023.
Highpricevolatilitydiscouragesinvestmentandcreateschallengesforcompaniestoplancleanenergytechnologyprojects.Geographicconcentrationandlongleadtimesforminingdevelopmentarethemainreasonsforthevolatility,butotherfactorsarealsoatplay.
Insufficientdataontheproduction,demand,trade,andinventoriesofcriticalminerals,particularlyforlithium,graphite,andcobalt,
createmarketuncertainty,increasepricevolatility,anddelay
investment(StuermerandWittenstein2023).
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB51T 1761-2014 混合信号示波器通 用检测方法
- DB51T 1469-2012 蜂蜡生产技术规程
- (规划设计)接线类陶瓷项目可行性研究报告
- 吹膜机建设项目可行性分析报告
- 热水器生产加工项目可行性研究报告
- 玻璃灯罩项目可行性研究报告
- 2024年砂石供应合同范本协议书
- 新建燃气智能控制器项目立项申请报告
- 2024-2030年新版中国热炎宁合剂项目可行性研究报告
- 2024-2030年新版中国不锈车件项目可行性研究报告
- 电批风批扭力测试记录
- (高清版)WS∕T 389-2024 医学X线检查操作规程
- 店铺(初级)营销师认证考试题库附有答案
- 《宁夏回族自治区基本医疗保险工伤保险和生育保险医用耗材支付目录》
- 高考集训合同范本
- 酱油项目可行性研究报告
- 矿山开采合股协议书
- GB/T 8492-2024一般用途耐热钢及合金铸件
- 2024-2030年中国家谱产品和服务行业市场现状供需分析及市场深度研究发展前景及规划战略投资分析研究报告
- 习近平法治思想概论智慧树知到期末考试答案章节答案2024年湘潭大学
- 健康促进生活方式量表评分标准
评论
0/150
提交评论