山西省临汾市曲沃高级职业中学高一数学文联考试题含解析_第1页
山西省临汾市曲沃高级职业中学高一数学文联考试题含解析_第2页
山西省临汾市曲沃高级职业中学高一数学文联考试题含解析_第3页
山西省临汾市曲沃高级职业中学高一数学文联考试题含解析_第4页
山西省临汾市曲沃高级职业中学高一数学文联考试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省临汾市曲沃高级职业中学高一数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若直线的倾斜角为30°,则实数m的值为(

)(A)

(B)

(C)

(D)参考答案:A直线的倾斜角为30°,

2.若x+y=1,则的最小值为()A.5 B.4 C.9 D.10参考答案:C【考点】7F:基本不等式.【分析】利用基本不等式的性质即可得出.【解答】解:x+y=1,则=()(x+y)=1+4++≥5+2=9,当且仅当y=2x=时取等号,故选:C3.已知两点A(a,3),B(1,﹣2),若直线AB的倾斜角为135°,则a的值为()A.6 B.﹣6 C.4 D.﹣4参考答案:D【考点】直线的倾斜角.【分析】利用斜率计算公式即可得出.【解答】解:∵过点A(a,3),B(1,﹣2)的直线的倾斜角为135°,∴tan135°==﹣1,解得a=﹣4.故选:D.4.已知点,向量,则向量(▲)A.(0,-1)

B.(1,-1)

C.(1,0)

D.(-1,0)参考答案:A5..甲、乙两台机床同时生产一种零件,现要检查它们的运行情况,统计10天中,两台机床每天出的次品数分别是甲0102203124乙2311021101两台机床出次品较少的是()A.甲

B.乙

C.一样

D.以上都不对参考答案:B略6.函数

A.在(1,+∞)内单调递增

B.在(1,+∞)内单调递减

C.在(-1,+∞)内单调递增

D.在(-1),+∞)内单调递减参考答案:A7.设是定义在上的奇函数,当时,,则A.

B.

C.

D.参考答案:A略8.在某种新型材料的研制中,实验人员获得了下列一组实验数据.现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是()x23456y0.971.591.982.352.61A.y=log2x B.y=2x C. D.y=2.61cosx参考答案:A【考点】对数函数、指数函数与幂函数的增长差异.【分析】根据题目中各函数的基本特征,对表中数据进行分析、判断即可.【解答】解:对于A,函数y=log2x,是对数函数,增长速度缓慢,且在x=2时y=1,x=4时y=2,基本符合要求;对于B,函数y=2x是指数函数,增长速度很快,且在x=2时y=4,x=4时y=16,代入值偏差较大,不符合要求;对于C,函数y=(x2﹣1)是二次函数,且当x=2时y=1.5,x=4时y=7.5,代入值偏差较大,不符合要求;对于D,函数y=2.61cosx是周期函数,且在[2,3]内是减函数,x=3时y<0,x=4时y<0,不符合要求.故选:A.9.已知全集,集合,,则A.

B.

C.

D.参考答案:D10.一个三棱锥的棱长均为2,四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(三棱锥的截面)的面积是

)

参考答案:二、填空题:本大题共7小题,每小题4分,共28分11.化简的结果是

.参考答案:-112.已知正数满足,则的最小值为

.参考答案:13.f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,f(x)=2016x+log2016x,则函数f(x)的零点的个数是

.参考答案:3【考点】根的存在性及根的个数判断.【分析】可知f(0)=0;再由函数零点的判定定理可判断在(0,+∞)上有且只有一个零点,再结合奇偶性可判断f(x)在(﹣∞,0)上有且只有一个零点,从而解得.【解答】解:∵f(x)是定义在R上的奇函数,∴f(0)=0;∵f(x)=2016x+log2016x在(0,+∞)上连续单调递增,且f()<0,f(1)=2016>0;故f(x)在(0,+∞)上有且只有一个零点,又∵f(x)是定义在R上的奇函数,∴f(x)在(﹣∞,0)上有且只有一个零点,∴函数f(x)的零点的个数是3;故答案为:3.14.函数的单调递减区间为.参考答案:(﹣∞,﹣1)和(﹣1,+∞)【考点】函数的单调性及单调区间.【专题】转化思想;定义法;函数的性质及应用.【分析】根据分式函数的性质进行求解即可.【解答】解:将函数y=的图象向左平移一个单位得到,∵y=的单调递减区间为(﹣∞,0)和(0,+∞),∴的单调递减区间为(﹣∞,﹣1)和(﹣1,+∞),故答案为:(﹣∞,﹣1)和(﹣1,+∞).【点评】本题主要考查函数单调递减区间的求解,根据分式函数的性质是解决本题的关键.15.已知tanx=,则=

.参考答案:10【考点】同角三角函数基本关系的运用.【分析】原式分子分母除以cosx,利用同角三角函数间的基本关系化简,将tanx的值代入计算即可求出值.【解答】解:∵tanx=,∴原式===10.故答案为:1016.已知,若,化简

.参考答案:17.已知数列满足则的通项公式

参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知,求:(1);(2)。参考答案:(1)……………2分即,注意到,故,从而,………………5分

……7分(2).……12分19.已知数列满足,且(1) 求证数列是等差数列;(2)求数列的通项公式

参考答案:解:(1)

(2)

略20.等差数列{an}的前n项和为Sn,数列{bn}是等比数列,满足,,,,.(1)求数列{an}和{bn}的通项公式;(2)令,求数列{cn}的前n项和Tn.参考答案:(1),;(2)【分析】(1)由是等差数列,,,可求出,由是等比数列,,,,可求出;(2)将和的通项公式代入,则,利用裂项相消求和法可求出.【详解】(1),,,解得.又,,.(2)由(1),得【点睛】本题考查了等差数列和等比数列的通项公式的求法,考查了用裂项相消求数列的前项和,属于中档题。21.(14分)(2015春?成都校级月考)已知函数f(x)=的图象在R上不间断.(1)求正实数a的值;(2)当x≥1时,函数h(x)=kx﹣2|x﹣2|≥0恒成立.求实数k的取值范围;(3)若关于x的方程f(x)=m|x|=0恰好有4个解,求实数m的取值范围.参考答案:考点:分段函数的应用.

专题:函数的性质及应用.分析:(1)根据函数f(x)=的图象在R上不间断,可得x=0时,两段函数的函数值相等,即4=2×|﹣a|,解得正实数a的值;(2)当x≥1时,函数h(x)=kx﹣2|x﹣2|≥0恒成立.k≥,分当x∈[1,2]时和当x∈(2,+∞)时,两种情况讨论,可得满足条件的实数k的取值范围;(3)若关于x的方程f(x)=m|x|=0恰好有4个解,函数y=f(x)与y=m|x|的图象有四个交点,对m值进行分类讨论,数形结合可得实数m的取值范围.解答:解:(1)∵函数f(x)=的图象在R上不间断.∴4=2×|﹣a|,解得a=2,或a=﹣2(舍去),∴正实数a=2,(2)当x≥1时,函数h(x)=kx﹣2|x﹣2|≥0,即k≥,当x∈[1,2]时,k≥=﹣2为减函数,故k≥2,当x∈(2,+∞)时,k≥=2﹣为增函数,故k≥0;综上所述:k≥2,即实数k的取值范围为[2,+∞),(3)若关于x的方程f(x)=m|x|=0恰好有4个解,即函数y=f(x)与y=m|x|的图象有四个交点,①当m<0时,函数y=f(x)与y=m|x|的图象无交点,不满足条件;②当m=0时,函数y=f(x)与y=m|x|的图象有三个交点,不满足条件;③当m>0时,若与y=mx与y=2x﹣4平行,即m=2,则函数y=f(x)与y=m|x|的图象有三个交点,则m≥2时,函数y=f(x)与y=m|x|的图象有三个交点,若y=﹣mx与y=﹣(x2+5x+4)相切,则函数y=f(x)与y=m|x|的图象有五个交点,即x2+(5﹣m)x﹣4=0的△=(5﹣m)2﹣16=0,解得:m=1,或m=9(舍去),即m=1时,函数y=f(x)与y=m|x|的图象有五个交点,0<m<1时,函数y=f(x)与y=m|x|的图象有六个交点,故当1<m<2时,函数y=f(x)与y=m|x|的图象有四个交点,故实数m的取值范围为(1,2)点评:本题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论