版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter5ElementaryStatisticsLarsonFarberNNormalProbabilityDistributions1IntroductiontoNormalDistributionsThestandardNormalDistributionSection5.12PropertiesofaNormalDistributionThemean,median,andmodeareequalBellshapedandissymmetricaboutthemeanThetotalareathatliesunderthecurveisoneor100%x3Asthecurveextendsfartherandfartherawayfromthemean,itgetscloserandclosertothex-axisbutnevertouchesit.Thepointsatwhichthecurvaturechangesarecalledinflectionpoints.ThegraphcurvesdownwardbetweentheinflectionpointsandcurvesupwardpasttheinflectionpointstotheleftandtotherightxInflectionpointInflectionpointPropertiesofaNormalDistribution4MeansandStandardDeviations2012151810111314161719212291215181011131416171920Curveswithdifferentmeansdifferentstandarddeviations
Curveswithdifferentmeans,samestandarddeviation
5TheStandardScoreThestandardscore,orz-score,representsthenumberofstandarddeviationsarandomvariablexfallsfromthemean.Thetestscoresforacivilserviceexamarenormallydistributedwithameanof152andstandarddeviationof7.Findthestandardz-scoreforapersonwithascoreof:(a)161 (b)148 (c)152(c)(a)(b)6TheStandardNormalDistributionThestandardnormaldistributionhasameanof0andastandarddeviationof1.Usingz-scoresanynormaldistributioncanbetransformedintothestandardnormaldistribution.432101234z7CumulativeAreas
Thecumulativeareaiscloseto1forzscorescloseto3.49.Thecumulativeareaiscloseto0forz-scorescloseto-3.49.
Thecumulativeareaforz=0is0.5000Thetotalareaunderthecurveisone.0123-1-2-3z8Findthecumulativeareaforaz-scoreof-1.25.0123-1-2-3zCumulativeAreas0.1056Readdownthezcolumnonthelefttoz=-1.2andacrosstothecolumnunder.05.Thevalueinthecellis
0.1056,thecumulativearea.Theprobabilitythatzisatmost-1.25is0.1056.P(z
-1.25)=0.10569FindingProbabilitiesTofindtheprobabilitythatzislessthanagivenvalue,readthecumulativeareainthetablecorrespondingtothatz-score.0123-1-2-3zReaddownthez-columnto-1.4andacrossto.05.Thecumulativeareais0.0735.
FindP(z<-1.45)P(z<-1.45)=0.073510FindingProbabilitiesTofindtheprobabilitythatzisgreaterthanagivenvalue,subtractthecumulativeareainthetablefrom1.0123-1-2-3zP(z>-1.24)=0.8925RequiredareaFindP(z>-1.24)Thecumulativearea(areatotheleft)is0.1075.Sotheareatotherightis1-0.1075=
0.8925.0.10750.892511FindingProbabilitiesTofindtheprobabilityzisbetweentwogivenvalues,findthecumulativeareasforeachandsubtractthesmallerareafromthelarger.FindP(-1.25<z<1.17)1.P(z<1.17)=0.87902.P(z<-1.25)=0.10563.P(-1.25<z<1.17)=0.8790-0.1056=0.77340123-1-2-3z120123-1
-2-3zSummaryTofindtheprobabilitythatzislessthanagivenvalue,readthecorrespondingcumulativearea.0123-1-2-3zTofindtheprobabilityisgreaterthanagivenvalue,subtractthecumulativeareainthetablefrom1.0123-1-2-3zTofindtheprobabilityzisbetweentwogivenvalues,findthecumulativeareasforeachandsubtractthesmallerareafromthelarger.13NormalDistributionsFindingProbabilitiesSection5.214ProbabilitiesandNormalDistributions115100Ifarandomvariable,xisnormallydistributed,the
probability
thatxwillfallwithinanintervalisequaltotheareaunderthecurveintheinterval.IQscoresarenormallydistributedwithameanof100andstandarddeviationof15.FindtheprobabilitythatapersonselectedatrandomwillhaveanIQscorelessthan115.
Tofindtheareainthisinterval,firstfindthestandardscoreequivalenttox=115.1501ProbabilitiesandNormalDistributionsFindP(z<1)115100StandardNormalDistributionFindP(x<115)NormalDistributionP(z<1)=0.8413,soP(x<115)=0.8413SAMESAME16Monthlyutilitybillsinacertaincityarenormallydistributedwithameanof$100andastandarddeviationof$12.Autilitybillisrandomlyselected.Findtheprobabilityitisbetween$80and$115.P(80<x<115)NormalDistributionP(-1.67<z<1.25)0.8944-0.0475=0.8469Theprobabilityautilitybillisbetween$80and$115is0.8469.Application17NormalDistributionsFindingValuesSection5.318z0.9803FromAreastoz-scoresLocate0.9803intheareaportionofthetable.Readthevaluesatthebeginningofthecorrespondingrowandatthetopofthecolumn.Thez-scoreis2.06.Findthez-scorecorrespondingtoacumulativeareaof0.9803.z=2.06correspondsroughlytothe98thpercentile.4321012340.980319Findingz-scoresFromAreasFindthez-scorecorrespondingtothe90thpercentile.z0.90Theclosesttableareais.8997.Therowheadingis1.2andcolumnheading.08.Thiscorrespondstoz=1.28.Az-scoreof1.28correspondstothe90thpercentile.20Findingz-scoresFromAreasFindthez-scorewithanareaof.60fallingtoitsright..60.400zzWith.60totheright,cumulativeareais.40.Theclosestareais.4013.Therowheadingis–0.2andcolumnheadingis.05.Thez-scoreis–0.25.Az-scoreof–0.25hasanareaof.60toitsright.Italsocorrespondstothe40thpercentile21Findingz-scoresFromAreasFindthez-scoresuchthat45%oftheareaunderthecurvefallsbetween–zandz.0z-zThearearemaininginthetailsis.55.Halfthisareaisineachtail,sosince.55/2=.275isthecumulativeareaforthenegativezvalueand.275+.45=.725isthecumulativeareaforthepositivez.Theclosesttableareais.2743andthez-scoreis–0.60.Thepositivezscoreis0.60..45.275.27522Fromz-ScorestoRawScoresThetestscoresforacivilserviceexamarenormallydistributedwithameanof152andstandarddeviationof7.Findthetestscoreforapersonwithastandardscoreof(a)2.33(b)-1.75(c)0(a)x=152+(2.33)(7)=168.31(b)x=152+(-1.75)(7)=139.75(c)x=152+(0)(7)=152Tofindthedatavalue,xwhengivenastandardscore,z: 23FindingPercentilesorCut-offvaluesMonthlyutilitybillsinacertaincityarenormallydistributedwithameanof$100andastandarddeviationof$12.Whatisthesmallestutilitybillthatcanbeinthetop10%ofthebills?10%90%Findthecumulativeareainthetablethatisclosestto0.9000(the90thpercentile.)Thearea0.8997correspondstoaz-scoreof1.28.x=100+1.28(12)=115.36.$115.36isthesmallestvalueforthetop10%.zTofindthecorrespondingx-value,use24TheCentralLimitTheoremSection5.425SamplingDistributionsAsamplingdistributionistheprobabilitydistributionofasamplestatisticthatisformedwhensamplesofsizenarerepeatedlytakenfromapopulation.Ifthesamplestatisticisthesamplemean,thenthedistributionisthesamplingdistributionofsamplemeans.SampleSampleSampleSampleSampleSampleThesamplingdistributionconsistsofthevaluesofthesamplemeans,
26xthesamplemeanswillhavea
normaldistributionTheCentralLimitTheoremwithameanandstandarddeviationIfasamplen30istakenfromapopulationwith
anytypedistributionthathasamean= andstandarddeviation=27thedistributionofmeansofsamplesizen,willbenormal
withameanstandarddeviationTheCentralLimitTheoremxIfasampleofanysizeistakenfromapopulationwith
anormaldistributionwithmean=andstandarddeviation=
28Application69.2Distributionofmeansofsamplesize60,willbenormal.ThemeanheightofAmericanmen(ages20-29)isinches.Randomsamplesof60suchmenareselected.Findthemeanandstandarddeviation(standarderror)ofthesamplingdistribution.meanStandarddeviation29InterpretingtheCentralLimitTheoremThemeanheightofAmericanmen(ages20-29)is
=69.2”.Ifarandomsampleof60meninthisagegroupisselected,whatistheprobabilitythemeanheightforthesampleisgreaterthan70”?Assumethestandarddeviationis2.9”.Findthez-scoreforasamplemeanof70:standarddeviationmeanSincen>30thesamplingdistributionofwillbenormal30InterpretingtheCentralLimitTheorem2.14P(>70)zThereisa0.0162probabilitythatasampleof60menwillhaveameanheightgreaterthan70”.=P(z>2.14)=1-0.9838
=0.0162InterpretingtheCentralLimitTheorem
31ApplicationCentralLimitTheoremDuringacertainweekthemeanpriceofgasolineinCaliforniawas$1.164pergallon.Whatistheprobabilitythatthemeanpriceforthesampleof38gasstationsinCaliforniaisbetween$1.169and$1.179?Assumethestandarddeviation=$0.049.standarddeviationmeanCalculatethestandardz-scoreforsamplevaluesof$1.169and$1.179.Sincen>30thesamplingdistributionofwillbenormal32.631.90zApplicationCentralLimitTheoremP(0.63<z<1.90)=0.9713-0.7357=0.2356Theprobabilityis0.2356thatthemeanforthesampleisbetween$1.169and$1.179.33NormalApproximationtotheBinomialSection5.534BinomialDistributionCharacteristicsThereareafixednumberofindependenttrials.(n)Eachtrialhas2outcomes,SuccessorFailure.Theprobabilityofsuccessonasingletrialispandtheprobabilityoffailureisq.p+q=1Wecanfindtheprobabilityofexactlyxsuccessesoutofntrials.Wherex=0or1or2…n.
xisadiscreterandomvariablerepresentingacountofthenumberofsuccessesinntrials.35Application34%ofAmericanshavetypeA+blood.If500Americansaresampledatrandom,whatistheprobabilityatleast300havetypeA+blood?Usingtechniquesofchapter4youcouldcalculatetheprobabilitythatexactly300,exactly301…exactly500AmericanshaveA+bloodtypeandaddtheprobabilities.Or…youcouldusethenormalcurveprobabilitiestoapproximatethebinomialprobabilities.Ifnp
5andnq5,thebinomialrandomvariablexisapproximatelynormallydistributedwithmeanand36Whydowerequirenp5andnq5?
01234544n=5p=0.25,q=.75np=1.25nq=3.75n=20p=0.25np=5nq=15n=50p=0.25np=12.5nq=37.50102030405037BinomialProbabilitiesThebinomialdistributionisdiscretewithaprobabilityhistogramgraph.The
probabilitythataspecificvalueof
x
willoccurisequaltothearea
oftherectanglewithmidpointatx.
Ifn=50andp=0.25findP(15
x17)Addtheareasoftherectangleswithmidpointsatx=15,x=16,x=17.1516170.0890.0660.0430.089+0.066+.043=0.198=.20P(15
x17)=0.197Approximately20%38151617CorrectionforContinuityCheckthatnp=12.5
5andnq=37.5
5.
UsethenormalapproximationtothebinomialtofindP(14
x16)ifn=50andp=0.25Valuesforthebinomialrandomvariablexare15,16and17.39151617CorrectionforContinuityCheckthatnp=12.5
5andnq=37.5
5.
UsethenormalapproximationtothebinomialtofindP(15
x17)ifn=50andp=0.25Theintervalofvaluesunderthenormalcurveis14.5
x17.5.Toensuretheboundariesofeachrectangleareincludedintheinterval,subtract0.5fromaleft-handboundaryandadd0.5toa
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 舞蹈比赛赞助商教师合同
- 招聘网站运营专员聘用合同
- 旅游景区停车场维修临建合同
- 智能制造装备供应合同
- 画廊展墙施工合同
- 2017版浙江政治选考高分突破专题复习(课件)必修二第9讲为人民服务政府
- 建筑工程保险合同协议书
- 桥梁下部结构施工合同样本
- 植物园照明设施安装合同
- 高尔夫赛事场地租赁合同范本
- 做一个遵纪守法的好学生主题班会-课件
- 加油站反恐专项经费保障制度
- 汽车车辆消防安全防火知识培训教学课件
- 2023版关于构建安全风险分级管控和隐患排查治理双重预防机制实施方案全
- 高考词汇3500+500【默写版】【打印版】
- 反循环钻孔灌注桩施工方案方案
- 数学课怎样分层教学案例
- 学校餐厅供货者评价和退出机制
- 2023医院招聘护士考试真题库及参考答案
- JJG 1149-2022电动汽车非车载充电机(试行)
- 工程款支付报审表
评论
0/150
提交评论